Determining particular solution of 3x3 matrix using variation of parameters
5 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
spcrooks
el 9 de Dic. de 2018
Comentada: madhan ravi
el 9 de Dic. de 2018
If I am correct in my process for variation of parameters for a matrix:
I already have my general solution that was solved (with some help...thanks!) via undetermined coefficients.
I then need to take the inverse of that matrix.
Then I multiply the inverse by the non-homogeneous part of the equation. And this is where I get stuck...
I can then take the integral of the resulting matrix for my particular solution...
Is taking this approach flawed in general? Or is there something simple that I am missing when I try to multiply the inverse by the non-hom. part?
Thank you for any insight.
Here is my general solution:
>> null(evs(1)*Id3-A)
ans =
152/21
-57/7
1
>> null(evs(2)*Id3-A)
ans =
0
-1/7
1
>> null(evs(3)*Id3-A)
ans =
0
0
1
And this is where the trouble begins...
>> A = sym([152/21,0,0;-57/7,-1/7,0;0,0,1]);
>> Y=inv(A)
Y =
[ 21/152, 0, 0]
[ -63/8, -7, 0]
[ 0, 0, 1]
>> B = sym([-1575,0,0]);
>> Y*B
??? Error using ==> mupadmex
Error in MuPAD command: dimensions do not match [(Dom::Matrix(Dom::ExpressionField()))::_mult2]
Error in ==> sym.sym>sym.mtimes at 180
X = mupadmex('mllib::mtimes',A.s,B.s);
0 comentarios
Respuesta aceptada
Más respuestas (0)
Ver también
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!