How can I build a multitask learning model
9 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
How can I build a multitask learning model using a pretrained CNN
0 comentarios
Respuestas (1)
Akshat
el 12 de Nov. de 2024
You can build a multitask model using a pretrained CNN by removing the last few layers and replacing them with your custom layers serving the task you want to serve.
Here is an example in case you want to replace the last few layers to make a classification and regression model:
net = resnet50;
lgraph = layerGraph(net);
% Remove the last layers specific to the original task
lgraph = removeLayers(lgraph, {'fc1000', 'fc1000_softmax', 'ClassificationLayer_fc1000'});
% Add new task-specific layers
% Task 1: Classification
numClassesTask1 = 10;
classificationLayers = [
fullyConnectedLayer(numClassesTask1, 'Name', 'fc_task1')
softmaxLayer('Name', 'softmax_task1')
classificationLayer('Name', 'classification_output')];
% Task 2: Regression
regressionLayers = [
fullyConnectedLayer(1, 'Name', 'fc_task2')
regressionLayer('Name', 'regression_output')];
lgraph = addLayers(lgraph, classificationLayers);
lgraph = addLayers(lgraph, regressionLayers);
lgraph = connectLayers(lgraph, 'avg_pool', 'fc_task1');
lgraph = connectLayers(lgraph, 'avg_pool', 'fc_task2');
options = trainingOptions('sgdm', ...
'MiniBatchSize', 32, ...
'MaxEpochs', 10, ...
'InitialLearnRate', 0.001, ...
'Shuffle', 'every-epoch', ...
'Plots', 'training-progress', ...
'Verbose', false);
Hope this helps!
0 comentarios
Ver también
Categorías
Más información sobre Deep Learning Toolbox en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!