How to constrain the lower and upper bounds in lsqcurvefit?
9 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Arun Kumar Bar
el 29 de Dic. de 2018
Comentada: Arun Kumar Bar
el 3 de En. de 2019
Hi,
For a data set (x, y), I am trying to fit a function f(m, x) using lsqcurvefit. I write as follow:
x=xdata;
y=ydata;
fun=f(m,x);
m0=[m01; m02; m03]; %these are real numbers
lb=[0; 0; 0];
ub=[ub1; ub2; ub3]; %these are real numbers
m=lsqcurvefit(fun, m0, xdata, ydata, lb, ub);
However, sometimes it obeys the bounds and sometimes it does not while fitting. Could anyone please help me if there is any way of constraining the bounds?
Thank you very much in advance!
Kind regards,
Arun
7 comentarios
Matt J
el 2 de En. de 2019
Editada: Matt J
el 2 de En. de 2019
I don't get negative values when I run this code. I get complex ones,
output =
0.3528 + 0.0001i -3.5428 - 1.5825i 0.2693 + 0.0047i
0.3698 + 0.0000i -0.0523 - 0.0029i 0.2063 + 0.0017i
Your function is not real-valued at certain m in the search space.
Respuesta aceptada
Matt J
el 2 de En. de 2019
Editada: Matt J
el 2 de En. de 2019
This seems to work okay,
for i=1:2
[xdata,is]=sort(realpart(:, i));
ydata=imaginarypart(is, i);
fun=@(m,xdata) ((((m(2)-m(1)).*tan(pi.*m(3)/2))/2)+((sqrt((((m(2)-m(1)).*tan(pi.*m(3)/2)).^2)-(4.*((xdata.*xdata)-(xdata.*(m(1)+m(2)))+(((m(1)+m(2)).^2)/4)-(((m(2)-m(1)).^2)/(4.*((sin(pi.*(m(3)-1)/2)).^2)))+(((m(2)-m(1)).^2).*((tan(pi.*m(3)/2)).^2)/4)))))/2));
m0=[0.45; 0.1815; 0.0735];
lb=[0; 0; 0];
ub=[2, 0.75, 0.25];
[m,resnorm,residual,exitflag,stats]=lsqcurvefit(@(m,xd) abs(fun(m,xd)), m0, xdata, ydata, lb, ub);
plot(xdata, ydata, 'o', 'linewidth', 1.5); hold on;
plot(xdata, fun(m, xdata), '-', 'linewidth', 1.5);
output(i, 1:3)=m(1:3, 1);
end
output =
0.3522 0.0000 0.1771
0.3676 0.0239 0.1444

2 comentarios
Más respuestas (0)
Ver también
Categorías
Más información sobre Get Started with Curve Fitting Toolbox en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!