How to take an integral of a matrix

16 visualizaciones (últimos 30 días)
Radik Srazhidinov
Radik Srazhidinov el 14 de En. de 2019
Comentada: Radik Srazhidinov el 15 de En. de 2019
I want to find an integral of a matrix:
T=[2 -sqrt(3) -1]';
R=[0.0042 -0.0755];
I=eye(3);
A=diag([7, 5, 2.05]');
B=[1 1 1]';
F=[-30.6722 17.8303 -0.3775];
fun=@(x) T*F*inv(exp(i*x)*I-A-B*F)*B*R*R'*B'*inv(exp(i*x)*I-A-B*F)'*F'*T';
q=integral(fun,0,2.*pi)
Can you please help me to correct the code? It is possible to use this integral function for matrix?
  2 comentarios
Walter Roberson
Walter Roberson el 14 de En. de 2019
Do not use inv() for this purpose. Use \ instead.
You can precalculate much of that for performance reasons.
And do not do it all in an anonymous function, since the exp(j*x*I - A - BF) has to be calculated twice.
Radik Srazhidinov
Radik Srazhidinov el 14 de En. de 2019
Hi, thanks for reply. I have changed e to exp. My matrix is small, I don't worry for performance, I just want to able to calculate the integral

Iniciar sesión para comentar.

Respuesta aceptada

David Goodmanson
David Goodmanson el 14 de En. de 2019
Hi Radik,
I assume you basically want to integrate each element in the resulting product matrix.
Lots of inner and outer products here. Looking at the overall product, R*R' is (row) x (col), a scalar inner product, so you can pull that out as an overall factor [where Matlab uses ' instead of the * that is in the formula]. The quantity
G = F*inv(exp(i*x)*I-A-B*F)*B
is (row) x (matrix) x (col) so it is also a scalar. Now that R*R' is out front, one can pull out G*G' and all that is left is T*T', which is the outer product (col) x (row). It's a matrix of rank 1. All together you have
(T*T')*(R*R')* Integral(G*G')dx
so you only have to integrate a scalar function of x. As Walter pointed out, in general it's better to use
G = F*( (exp(i*x)*I-A-B*F)\B )
instead of inv, but for a 2x2 it probably doesn't matter too much.
  6 comentarios
Walter Roberson
Walter Roberson el 15 de En. de 2019
Radik:
T=[2 -sqrt(3) -1]';
R=[0.0042 -0.0755];
I=eye(3);
A=diag([7, 5, 2.05]');
B=[1 1 1]';
F=[-30.6722 17.8303 -0.3775];
syms x real %changed
G=F*((exp(i*x)*I-A-B*F)\B);
W=R*R';
P=T*T';
f = G*G';
L=int(f,[0 2.*pi])
K=W*P*L;
Radik Srazhidinov
Radik Srazhidinov el 15 de En. de 2019
that is it, thank you Walter!

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Visualization and Data Export en Help Center y File Exchange.

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by