Bessel filter transfer function

7 visualizaciones (últimos 30 días)
Thomas Becker
Thomas Becker el 29 de En. de 2019
Respondida: Star Strider el 4 de Mayo de 2020
According to reverse Bessel polynomials from https://en.wikipedia.org/wiki/Bessel_filter#Bessel_polynomials the 4th order looks like this:
s^4+10s^3+45s^2+105s+105.
I create the transfer function of the filter like this:
T = 1;
Bessel4 = tf(105,[1 10 45 105 105].*T.^[4 3 2 1 0])
Bessel4 =
105
-----------------------------------
s^4 + 10 s^3 + 45 s^2 + 105 s + 105
Continuous-time transfer function.
Is that correct so far? However, I don't understand the relation or difference to the MATLAB functions besself and besselap:
%% besselap
[z,p,k] = besselap(4);
[num,den] = zp2tf(z,p,k);
Bessel4_besselap = tf(num,den)
% Bessel4_besselap =
%
% 1
% -----------------------------------------
% s^4 + 3.124 s^3 + 4.392 s^2 + 3.201 s + 1
%
% Continuous-time transfer function.
%% besself
[num,den] = besself(4,1/T);
Bessel4_besself = tf(num,den)
% Bessel4_besself =
%
% 1
% -----------------------------------------
% s^4 + 3.124 s^3 + 4.392 s^2 + 3.201 s + 1
%
% Continuous-time transfer function.
Obviously, the resulting transfer functions are different. Should I use the results from besself/besselap or my own implementation from above?
  2 comentarios
RAN
RAN el 30 de Abr. de 2020
Hi,
Did you find the solution? I am facing the same problem like yours.
Thomas Becker
Thomas Becker el 4 de Mayo de 2020
Hi Rahul,
I'm sorry, that I don't have a solution so far. We skipped the attempt to use the Bessel filter and switched to an easy moving average filter due different reasons...
Best regards
Thomas

Iniciar sesión para comentar.

Respuesta aceptada

Star Strider
Star Strider el 4 de Mayo de 2020
The besselap function creates a Bessel lowpass filter prototype. The besself function transforms the besselap design to create different filter types from it. The advantage of Bessel filters is that they have linear (neutral) phase response, so are perfect for hardware anti-aliasing filters, however the continuous Bessel filter designs cannot be converted to discrete (digital) filters.
The filtfilt function makes all digital filters phase-neutral, so create whatever digital (discrete) filter suits your needs, then use filtfilt to filter your signals with it.

Más respuestas (0)

Productos


Versión

R2015b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by