how to solve a system of equations with n equation and m unknown (m>n)?
2 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
to solve this equation "f = a+b θs + c θv cos(φ)" : unknowns are : f, a, b & c i am working on space image and can calculate θs, θv & φ for all pixel of image so i can write a lot of equation. and there are 2 constraint :
How do I solve this system of equations?
4 comentarios
Jan
el 25 de Jul. de 2012
Dear nasrin, of course we cannot access the files on your harddisk. Imagine what this would mean!
Respuestas (1)
Sargondjani
el 25 de Jul. de 2012
i think fmincon (constrained optimization) will work best... if you try to minimize some error use as the objective: objective=error^2.
if you dont have the optimization toolbox you can try fminsearchcon from the file exchange (but this only works properly for a couple of variables at most)
note that fmincon can only find one local solution and it requires a continuous function + continuous derivate. if not continuous, then you should try genetic algorithm
3 comentarios
Sargondjani
el 31 de Jul. de 2012
fminsearchcon does exist in the 'file exchange', ie. you have to download it.
MJTHDSN
el 12 de Abr. de 2018
Dear Matlabers,
I have a similar question but a little bit confusing. Let`s assume we have 6 equations as below:
EQ1:a{{(L^2)*(Z^2)+(L^2)*(M^2)-2*L*(Z^2)+(Z^2)}}=(L^2)*(T^2)-2*L*(T^2)+ (T^2)-(2*L*T*B)+(T*B)+(B^2)
EQ2: b{{(L^2)*(Z^2)+(L^2)*(M^2)-2*L*(Z^2)+(Z^2)}}=(L^2)*(T^2)+(2*L*T*B)+(B^2)
EQ3: c{{(L^2)*(Z^2)+(L^2)*(M^2)-2*L*(Z^2)+(Z^2)}}=(T^2)+(2*T*B)+(B^2)
EQ4:d{{(L^2)*(Z^2)+(L^2)*(M^2)-2*L*(Z^2)+(Z^2)}}=(L^2)*(T^2)-2*L*(T^2)+ (T^2)-(2*L*T*B)-(T*B)+(B^2)
EQ5: e{{(L^2)*(Z^2)+(L^2)*(M^2)-2*L*(Z^2)+(Z^2)}}=(L^2)*(T^2)-(2*L*T*B)+(B^2)
EQ6: f{{(L^2)*(Z^2)+(L^2)*(M^2)-2*L*(Z^2)+(Z^2)}}=(T^2)-(2*T*B)+(B^2)
in the equations above a,b,c,d,e and f are the numerical known values (0.543 for example). So we have 6 equations with 5 unknowns as L, Z, M, T and B.
Can you please give me cues how to solve the equations to find these unknowns using MATLAB.
Best Regards,
Ver también
Categorías
Más información sobre Nonlinear Optimization en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!