How can i choose the k initial centroids far away from each other in k-means clustering based image segmentation
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
sumaiya khan
el 14 de Feb. de 2019
Respondida: Alok Nimrani
el 21 de Feb. de 2019
The steps performed for k-means clustering are as follows:
- Choose k initial centroids
- Compute the distance from each pixel to the centroid
- Recalculate the centroids after all the pixels have been assigned
- Repeat steps 2 and 3 until the same points are assigned to each cluster in consecutive rounds.
How can i choose the k-initial centroids, such that they are far from each other.
0 comentarios
Respuesta aceptada
Alok Nimrani
el 21 de Feb. de 2019
You can make use of k-means++ algorithm to choose the initial centroids far away from each other. This algorithm is the one used by default while performing k-means clustering using the k-means function in MATLAB.
Hope this helps.
0 comentarios
Más respuestas (0)
Ver también
Categorías
Más información sobre Statistics and Machine Learning Toolbox en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!