optimization problem using algorithms(GA, ALO)

3 visualizaciones (últimos 30 días)
Mohammad Al ja'idi
Mohammad Al ja'idi el 1 de Mzo. de 2019
Respondida: bahar vojdani el 20 de Feb. de 2022
hi, Iam begginer on matlab, I have an optimization problem and i need to find the global minimum value, but i did all the procedures by making matrices for every thing and finally i get the minimum value using min and mink function. but in fact i need to learn how to use the algortihms such as GA or ALO to solve my problem. how can i build my functions and formulate my problem to be compatible with these algorithm and how can i use my parameters and constraints. Thanks in advance

Respuesta aceptada

Rupesh Gosavi
Rupesh Gosavi el 1 de Mzo. de 2019
The best way to learn about Genetic Algorithm (GA) is to refer to MATLAB documentation. The plenty of videos, documentations, examples and webinars will surely help you to solve your problem. Take a look at this here.
  1 comentario
Mohammad Al ja'idi
Mohammad Al ja'idi el 1 de Mzo. de 2019
thanks so much, i will follow the link to see how it can help me

Iniciar sesión para comentar.

Más respuestas (1)

bahar vojdani
bahar vojdani el 20 de Feb. de 2022
fobj = @ReadGrasshopperFile;
dim = 3;
Max_iteration = 100;
SearchAgents_no = 300;
lb=[1,1,1];
ub=[10,10,10];
[Best_score,Best_pos,cg_curve]=ALO(SearchAgents_no,Max_iteration,lb,ub,dim,fobj);
function [Elite_antlion_fitness,Elite_antlion_position,Convergence_curve]=ALO(N,Max_iter,lb,ub,dim,fobj,handles)
% Initialize the positions of antlions and ants
antlion_position=initialization(N,dim,ub,lb);
ant_position=initialization(N,dim,ub,lb);
% Initialize variables to save the position of elite, sorted antlions,
% convergence curve, antlions fitness, and ants fitness
Sorted_antlions=zeros(N,dim);
Elite_antlion_position=zeros(1,dim);
Elite_antlion_fitness=inf;
Convergence_curve=zeros(1,Max_iter);
antlions_fitness=zeros(1,N);
ants_fitness=zeros(1,N);
% Calculate the fitness of initial antlions and sort them
for i=1:size(antlion_position,1)
antlions_fitness(1,i)=fobj(antlion_position(i,:));
end
[sorted_antlion_fitness,sorted_indexes]=sort(antlions_fitness);
for newindex=1:N
Sorted_antlions(newindex,:)=antlion_position(sorted_indexes(newindex),:);
end
Elite_antlion_position=Sorted_antlions(1,:);
Elite_antlion_fitness=sorted_antlion_fitness(1);
% Main loop start from the second iteration since the first iteration
% was dedicated to calculating the fitness of antlions
Current_iter=2;
while Current_iter<Max_iter+1
% This for loop simulate random walks
for i=1:size(ant_position,1)
% Select ant lions based on their fitness (the better anlion the higher chance of catching ant)
Rolette_index=RouletteWheelSelection(1./sorted_antlion_fitness);
if Rolette_index==-1
Rolette_index=1;
end
% RA is the random walk around the selected antlion by rolette wheel
RA=Random_walk_around_antlion(dim,Max_iter,lb,ub, Sorted_antlions(Rolette_index,:),Current_iter);
% RA is the random walk around the elite (best antlion so far)
[RE]=Random_walk_around_antlion(dim,Max_iter,lb,ub, Elite_antlion_position(1,:),Current_iter);
ant_position(i,:)= (RA(Current_iter,:)+RE(Current_iter,:))/2; % Equation (2.13) in the paper
end
for i=1:size(ant_position,1)
% Boundar checking (bring back the antlions of ants inside search
% space if they go beyoud the boundaries
Flag4ub=ant_position(i,:)>ub;
Flag4lb=ant_position(i,:)<lb;
ant_position(i,:)=(ant_position(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;
ants_fitness(1,i)=fobj(ant_position(i,:));
All_fitness(1,i)=ants_fitness(1,i);
end
% Update antlion positions and fitnesses based of the ants (if an ant
% becomes fitter than an antlion we assume it was cought by the antlion
% and the antlion update goes to its position to build the trap)
double_population=[Sorted_antlions;ant_position];
double_fitness=[sorted_antlion_fitness ants_fitness];
[double_fitness_sorted, I]=sort(double_fitness);
double_sorted_population=double_population(I,:);
antlions_fitness=double_fitness_sorted(1:N);
Sorted_antlions=double_sorted_population(1:N,:);
% Update the position of elite if any antlinons becomes fitter than it
if antlions_fitness(1)<Elite_antlion_fitness
Elite_antlion_position=Sorted_antlions(1,:);
Elite_antlion_fitness=antlions_fitness(1);
end
% Keep the elite in the population
Sorted_antlions(1,:)=Elite_antlion_position;
antlions_fitness(1)=Elite_antlion_fitness;
% Update the convergence curve
Convergence_curve(Current_iter)=Elite_antlion_fitness;
if Current_iter>2
line([Current_iter-1 Current_iter], [Convergence_curve(Current_iter-1) Convergence_curve(Current_iter)],'Color',[0 0.4470 0.7410])
xlabel('Iteration');
ylabel('Best score obtained so far');
drawnow
end
results = get(handles.uitable1,'data');
results{2,1}=Current_iter;
results{2,2}=Elite_antlion_fitness;
set(handles.uitable1,'data',results);
Current_iter=Current_iter+1;
end
end
Hello,
I used your valuable optimization (ALO) source codes; This is amazing. Unfortunately, when I run the code, it gives me some error " unable to define local function ALO."
I really appreciate any help you can provide.

Categorías

Más información sobre Particle Swarm en Help Center y File Exchange.

Productos


Versión

R2018b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by