working with large matrices
30 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Bram Stegeman
el 6 de Mzo. de 2019
Comentada: Stephan Koschel
el 17 de Mzo. de 2020
I have to work with large matrices (e.g. A = 8000 x 100.000, all non-zero values).
I want to calculate T= ((A'*A) + lamda*speye(n))\(A'*A); with lamda =e.g. 1-e-3.
I have installed 64 gb ddr and as expected I run out of memory (also when I introduce a threshold and force A to be sparse, and then create sparse(A) and sparse (A') and try to calculate T.
Are there alternative ways to calculate T without out of memory issues?
3 comentarios
Stephan Koschel
el 17 de Mzo. de 2020
You are only interested in the diagonals of a matrix multiplication?
I would implement an iteration over the diagonal elements and load the corresponding columns and rows from the two matrices. The entry on the diagonal becomes something like sum(current_row .* current_col)
The iteration could slow down the process, but you only need to load two vectors into memory.
Respuesta aceptada
Más respuestas (0)
Ver también
Categorías
Más información sobre Sparse Matrices en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!