How to calculate accuracy for neural network algorithms?
4 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
sandhya sandhya
el 14 de Mzo. de 2019
Comentada: Osama Tabbakh
el 15 de Jul. de 2019
How to calculate accuracy for neural network algorithms?
1 comentario
Adam
el 14 de Mzo. de 2019
I'm pretty sure this is a topic with literally thousands of hits if you google it! Or are you asking specifically about a Matlab coded network, in which case showing some code helps.
Respuesta aceptada
Greg Heath
el 15 de Mzo. de 2019
I normalize the mean-square-error
MSE = mse(error) = mse(output-target)
by the minimum MSE obtained when the output is a constant.
If the output is a constant, the MSE is minimized when that constant is
the average of the target. For a 1-D target
NMSE = mse(output-target) / mse(target-mean(target))
= mse(error) / var(target,1)
This is related to the R-square statistic (AKA as R2) via
Rsquare = R2 = 1 - NMSE
Both NMSE and R2 are contained in [0,1].
I have posted zillions of examples in both the NEWSGROUP and ANSWERS.
Just search using
Greg NMSE
Thank you for formally accepting my answer
Greg
5 comentarios
Osama Tabbakh
el 15 de Jul. de 2019
But what I do not understand is in the way of R-square statistic you calculate with the consideration that the behavior between the target and the output is linear. But when the behavior is nonlinear, then you get high accuracy, although the network produces a large error.
Más respuestas (0)
Ver también
Categorías
Más información sobre Sequence and Numeric Feature Data Workflows en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!