Recursive symbolic differentiation with anonymous functions
3 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
This is closely related to an earlier post of mine, but i thought I should make it a separate thread, since it's not really the same topic
I'd like the commands
syms x lambda
f = @(x)B(x);
g = @(x)lambda*C(x);
h = @(x)f(x) - g(x);
diff(h,x)
to "go inside of h(x)" and differentiate both f and g, to return
diff(B(x), x) - lambda*diff(C(x), x)
Instead it returns
diff(f(x), x) - diff(g(x), x)
I get the answer I want if I use
syms x
f = sym('B(x)')
g = sym('lambda*C(x)')
h = f - g; diff(h,x)
but this coding is less flexible than the former, since the argument 'x' is "hard-coded" into my functions, so I would have to use subs everytime I want to give my functions different arguments.
So in short, what I'm hoping for is the best of both worlds, the flexibility provided by anonymous functions plus the recursive (and other) properties provided when I use "sym"
1 comentario
Oleg Komarov
el 13 de Ag. de 2012
Editada: Oleg Komarov
el 13 de Ag. de 2012
I don't see the problem, the subs() in a symbolic context it's just a line of code.
Respuestas (1)
Ver también
Categorías
Más información sobre Numbers and Precision en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!