How can I have several actions for a DQN in the Reinforcement Learning Toolbox?
8 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Rusczak
el 6 de Mayo de 2019
Comentada: Huzaifah Shamim
el 9 de Jul. de 2020
I'm trying to define the output of a DQN agent with a custom environment, and can't use the actionInfo = rlFiniteSetSpec() correctly.
I'm trying to control 3 actuators that will receive commands 0 and 1.
I always get number of actions = 1.
And the documentation is not clear as it's a new toolbox.
Any suggestions?
3 comentarios
Huzaifah Shamim
el 9 de Jul. de 2020
Oh nice okok. What custom environment where you trying to make?
Also how should I approach it if i have 3 agents (like your three actuators) but 12 actions could be applied to them?
Respuesta aceptada
Emmanouil Tzorakoleftherakis
el 11 de Mayo de 2019
If you type
help rlFiniteSetSpec
the second example is
spec = rlFiniteSetSpec({[0,1];[1,1];[1,2];[1,3]})
If you define all possible combinations of the discrete inputs in a cell array as above, that should work (think of a single action as one possible combination of your 3 actuator commands).
I hope this helps.
0 comentarios
Más respuestas (0)
Ver también
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!