Need help in solving coupled equations
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
Hello everybody,
I would like to solve the following equations simultaneously for all X,Y,Z, W where i = 1: Nw, j = 1 : Nl, k = 1: K, W_net1, W_net2, m_net1, and m_net2 are given.
For example for K = 2, Nw = 2, Nl =3, I am looking for all X(1,1), X(2,1),X(1,2), X(2,2), Y(1,1), Y(2, 1), Y(3,1), Y(1,2), Y(2, 2), Y(3,2),.....
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/218768/image.png)
The above equations can be implemented in matlab using the following code.
ivec = 1 : Nw;
jvec = 1 : Nl;
X = zeros(Nw, K);
Y = zeros(Nl, K);
W = zeros(Nw, K);
Z = zeros(Nl, K);
S = zeros(Nl, K);
for k = 1 : K
for i = ivec
X(i, k) = 2*(1 - 2*W(i,k))/((1 - 2*W(i,k))*(1 + W_net1(i,k)) + W(i,k)*W_net1(i,k)*(1 - (2*W(i,k))^m_net1(i,k)));
ii = setdiff(ivec, i);
tW1 = prod( 1 - X(ii, k) );
tW2 = prod( 1 - Y(jvec, k) );
W(i,k) = 1 - tW1 * tW2;
end
for j = jvec
Y(j, k) = 2*(1 - 2*Z(j,k))/((1 - 2*Z(j,k))*(1 + W_net2(j,k)) + Z(j,k)*W_net2(j,k)*(1 - (2*Z(j,k))^m_net2(j,k)));
i = ivec;
tZ1 = prod(1 - X(i, k));
jj = setdiff(jvec, j);
tZ2 = prod(1 - Y(jj, k));
tZ3 = tZ2 * tZ1;
Z(j,k) = 1 - tZ3;
S(j,k) = Y(j, k) * tZ3;
end
end
Could someone please tell me how I can solve these equations numerically?
Thanks in advance!
Respuestas (1)
Sulaymon Eshkabilov
el 10 de Mayo de 2019
Here is the completed code. Put your data instead of sample data used for W_net1, W_net2, m_net1, m_net2
clc; clearvars
Nw = 2; Nl=3; K=2;
ivec = 1 : Nw;
jvec = 1 : Nl;
W_net1 = randi([-123, 123], Nw, K); % Just sample data generated for demo. You need to use your own data isntead
W_net2 = randi([-123, 123], Nl, K); % Just sample data generated for demo. You need to use use your own data isntead
m_net1 = randi([-123, 123], Nw, K); % Just sample data generated for demo. You need to use use your own data isntead
m_net2 = randi([-123, 123], Nl, K); % Just sample data generated for demo. You need to use use your own data isntead
X = zeros(Nw, K);
Y = zeros(Nl, K);
W = zeros(Nw, K);
Z = zeros(Nl, K);
S = zeros(Nl, K);
for k = 1 : K
for i = ivec
X(i, k) = 2*(1 - 2*W(i,k))/((1 - 2*W(i,k))*(1 + W_net1(i,k)) + W(i,k)*W_net1(i,k)*(1 - (2*W(i,k))^m_net1(i,k)));
ii = setdiff(ivec, i);
tW1 = prod( 1 - X(ii, k) );
tW2 = prod( 1 - Y(jvec, k) );
W(i,k) = 1 - tW1 * tW2;
end
for j = jvec
Y(j, k) = 2*(1 - 2*Z(j,k))/((1 - 2*Z(j,k))*(1 + W_net2(j,k)) + Z(j,k)*W_net2(j,k)*(1 - (2*Z(j,k))^m_net2(j,k)));
i = ivec;
tZ1 = prod(1 - X(i, k));
jj = setdiff(jvec, j);
tZ2 = prod(1 - Y(jj, k));
tZ3 = tZ2 * tZ1;
Z(j,k) = 1 - tZ3;
S(j,k) = Y(j, k) * tZ3;
end
end
X(1,1), X(2,1),X(1,2), X(2,2), Y(1,1), Y(2, 1), Y(3,1), Y(1,2), Y(2, 2), Y(3,2) % Also, you can display other results
1 comentario
Ver también
Categorías
Más información sobre Symbolic Math Toolbox en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!