Pca built-in function and how its works?
8 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Muhammad Ibrar
el 24 de Mayo de 2019
Comentada: Muhammad Ibrar
el 24 de Mayo de 2019
Can anyone tell me the pca built-in function for machine learning also which one dataset are used for dimensionality reduction... Thnx in advance
0 comentarios
Respuesta aceptada
KSSV
el 24 de Mayo de 2019
REad abut Singula Value DEcomposition. svd . And refer this for more clarity:
3 comentarios
KSSV
el 24 de Mayo de 2019
Matrices...a 2D matrix. Check the documentation..you got many examples: https://in.mathworks.com/help/stats/pca.html
Más respuestas (1)
Steven Lord
el 24 de Mayo de 2019
The books and papers listed in the References section on the documentation page for the pca function in Statistics and Machine Learning Toolbox may be of interest if you want to know the technical details behind principal component analysis. The page linked as the second entry in the Topics section of that page gives a brief overview of what PCA is.
3 comentarios
Steven Lord
el 24 de Mayo de 2019
The main point behind PCA is that you use it to analyze your data to identify your data's principal components and learn more about your data.
If you want a sample dataset to experiment with pca you could use rand, randn, randi, gallery, ones, zeros, eye, etc. Some of those would make for more interesting experiments than others.
Ver también
Categorías
Más información sobre Dimensionality Reduction and Feature Extraction en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!