solving a function equal to zero
10 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
sarra aloui
el 26 de Mayo de 2019
Comentada: dpb
el 27 de Mayo de 2019
i am trying to run this code to obtain the last value to the function y=0
format loose
format compact
format long
m=[ 4000 50 ] ;
s= [400 5 ] ;
ls=[];
n=length(m) ;
for i = 1 : n
eval(sprintf('syms x%i,',i));
eval(sprintf('x(%i) = x%i;', i, i));
end
Y= @(x1, x2) (29-(6*x(1))-(18*x(2)));
for i=1:n
temp =(-diff(Y,x(i)));
ls=[ls, temp];
end
for i=1:n
if i<n
xi=m(i);
disp(x);
disp(i);
else
last=4000 ;
xi = fzero(Y,last) ;
end
end
i am trying to define the last value of the function y=0 using initial guess but i am getting this error
Error using fzero (line 328)
Function value at starting guess must be finite and real.
0 comentarios
Respuesta aceptada
dpb
el 26 de Mayo de 2019
Editada: dpb
el 27 de Mayo de 2019
fsolve does the work for you...if you define the functional correctly--
fnY= @(x) (29-(6*x(1))-(18*x(2)));
opt= optimoptions('fsolve','algorithm','levenberg-marquardt');
>> fsolve(Y,[0 0],opt)
Equation solved.
fsolve completed because the vector of function values is near zero
as measured by the default value of the function tolerance, and
the problem appears regular as measured by the gradient.
<stopping criteria details>
ans =
0.4833 1.4500
>>
Of course, there are an infinite number of possible solutions; pick a value for one or the other of the two X and solve for the other.
2 comentarios
dpb
el 27 de Mayo de 2019
That's simply
>> x1=4000;
>> x2=(29-(6*x1))/18
x2 =
-1.3317e+03
>>
But, you can still use fsolve if must...there's just one variable to solve for, however...
>> Y= @(x) (29-(6*x1)-(18*x));
>> x2=fsolve(Y,[ 0],opt)
Equation solved.
fsolve completed because the vector of function values is near zero
as measured by the default value of the function tolerance, and
the problem appears regular as measured by the gradient.
<stopping criteria details>
x2 =
-1.3317e+03
>>
Más respuestas (0)
Ver también
Categorías
Más información sobre Systems of Nonlinear Equations en Help Center y File Exchange.
Productos
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!