How to normalise a FFT of a 3 variable function.

1 visualización (últimos 30 días)
J K
J K el 11 de Jul. de 2019
Comentada: Rena Berman el 19 de Sept. de 2019
I have this function:
input = exp(-((W-w_o).^2)/deltaW.^2).*exp(-(Kx.^2+Ky.^2)/(deltaK.^2)).*exp(1i.*sqrt((W/c).^2-(Kx.^2+Ky.^2)).*z(j));
this is then fourier transformed:
fourier = fftn(input)
I need to normalise it. Dividing it by length() is not giving good results. Could someone please help!

Respuestas (3)

Matt J
Matt J el 11 de Jul. de 2019
Editada: Matt J el 11 de Jul. de 2019
To normalize so that the continuous Fourier transform is approximated, multiply by the sampling intervals, dT1*dT2*dT3
  7 comentarios
Matt J
Matt J el 12 de Jul. de 2019
Editada: Matt J el 12 de Jul. de 2019
Maybe also
F=F*sqrt(T1*T2*T3)/norm(F)
where T1,2,3 are the sampling distances.
J K
J K el 12 de Jul. de 2019
Thank you so much!

Iniciar sesión para comentar.


Matt J
Matt J el 11 de Jul. de 2019
Editada: Matt J el 11 de Jul. de 2019
To normalize so that Parseval's equation holds, divide by sqrt(numel(input)).

Matt J
Matt J el 11 de Jul. de 2019
Editada: Matt J el 11 de Jul. de 2019
To normalize so as to obtain Discrete Fourier Series coefficients, divide by N=numel(input).

Categorías

Más información sobre Fourier Analysis and Filtering en Help Center y File Exchange.

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by