Find constraints on polynomial coefficients optimization
3 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
AdarG
el 11 de Jul. de 2019
Comentada: AdarG
el 13 de Jul. de 2019
I am trying to find the optimal coefficients of the polynomial of the form:
theta=a1*t^2 +a2*t+a3 (i.e., to find a1,a2,a3) for some cost function.
I'm using patternsearch and I need to formulate the nonlinear/linear constraints on a1,a2,a3.
The problem is that I have constraints on theta (say [lb,ub]) and the range of t (say [0,T]), but not on the coefficients themselves.
So far, I've managed to formulate these constraints:
lb<a3<ub;
lb<a1*T^2+a2*T+a3<ub;
I can't figure out the 3rd constraint on the extrimum on t=-a2/(2*a1). I care only if is in the rectancle [0,T],[lb,ub].
Any idea?
6 comentarios
Walter Roberson
el 11 de Jul. de 2019
Those are not real constraints on the variables, only on theta.
Respuesta aceptada
Bruno Luong
el 12 de Jul. de 2019
Editada: Bruno Luong
el 12 de Jul. de 2019
Why can't you implement
ts := max(min(-a2/(2*a1),T),0);
Then add the 6 constraints into your minimization pb:
two non-linear (and not differentiable):
lb <= theta(ts) <= ub
four non equality linear contstraints;
lb <= theta(0) <= ub
lb <= theta(T) <= ub
5 comentarios
Más respuestas (2)
Matt J
el 11 de Jul. de 2019
Editada: Matt J
el 11 de Jul. de 2019
What's to figure out? You've already articulated that the (nonlinear) constraints on the extremum are,
0<=-a2/(2*a1)<=T
The only thing I might recommend is that converting them to linear constraints,
0<=-a2<=2*T*a1
a1>=0
might make things easier for patternsearch.
6 comentarios
Matt J
el 11 de Jul. de 2019
Editada: Matt J
el 11 de Jul. de 2019
x = fseminf(fun,[a1,a2,a3], 2, @(a,s) seminfcon(a,s,T,lb,ub));
function [c,ceq,K_ub,K_lb,s]= seminfcon(a,s,T,lb,ub)
% No finite nonlinear inequality and equality constraints
c = [];
ceq = [];
% Sample set
if isnan(s(1))
% Initial sampling interval
s = [0.01 0; 0.01 0];
end
t1 = 0:s(1):T;
t2 = 0:s(2):T;
% Evaluate the semi-infinite constraint
K_ub = polyval(a,t1)-ub;
K_lb = lb - polyval(a,t2);
end
0 comentarios
Ver también
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!