An error occuered before neural network training

1 visualización (últimos 30 días)
kengo fujimura
kengo fujimura el 12 de Jul. de 2019
Respondida: Hiroyuki Hishida el 16 de Oct. de 2019
Hi
I want to classify time series data by unsupervised learning
So,I'm making recurrent self organized neural network by Shallow Neural Network.
This error occuered
error: +
The dimensions of the matrix must match.(Original txt:行列の次元は一致しなければなりません。)
error: trainbu>train_network (line 196)
net.IW{i,j} = net.IW{i,j} + dw;
error: trainbu (line 52)
[out1,out2] = train_network(varargin{2:end});
error: network/train (line 353)
[net,tr] = feval(net.trainFcn,'apply',net,tr,data,calcMode.options,hints,net.trainParam);
error: SOM_test (line 79)
[net2,tr] = train(net2,Xs,{},Xi,Ai);
Program I wrote is this
[X, Y]= simpleseries_dataset;
net2.userdata='fujimura_kengo';
dimension1 = 5;
dimension2 = 5;
net2= layrecnet(1:2,10);
net2.numLayers=2;
net2.name=('Den-O');
net2.trainFcn='trainbu';
net2.numInputs=1;
net2.layers{1}.initFcn='initwb';
net2.layers{1}.netInputFcn='netsum';
%2層目の設定
net2.layers{2}.dimensions=[5 5];
net2.layers{2}.distanceFcn='linkdist' ;
net2.layers{2}.initFcn= 'initwb' ;
net2.layers{2}.netInputFcn= 'netsum' ;
net2.layers{2}.topologyFcn= 'hextop' ;
net2.layers{2}.transferFcn= 'compet' ;
net2.layers{2}.netInputParam='netprod';
net2.layers{2}.transferParam='elliotsig';
net2.layers{2}.distanceParam='dist';
net2.inputConnect=[1 ; 0 ];
net2.layerConnect=[1 0; 1 0 ];
net2.outputConnect=[0 1 ];
net2.biasConnect=[0;0];
net2.divideFcn=''
view(net2);
[net2,tr] = train(net2,Xs,{},Xi,Ai);
I want fix this error.But I can't ditect cause of error
If someone know how to fix,please teach me how to fix

Respuestas (1)

Hiroyuki Hishida
Hiroyuki Hishida el 16 de Oct. de 2019
Hi Kengo,
I tried reproduce your phenomemon, but it was failed since 'Xs', 'Xi' and 'Ai' are not defined.
Could you add more information?
Best
Hiroyuki

Categorías

Más información sobre 時系列、シーケンス、およびテキストを使用した深層学習 en Help Center y File Exchange.

Productos


Versión

R2017a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!