I tried to create a neural networks but what's wrong ?

2 visualizaciones (últimos 30 días)
This is the code i tried :
net = newff(P,T,S)
net = newff(P,T,S,TF,BTF,BLF,PF,IPF,OPF,DDF)
Description
newff(P,T,S) takes,
  • P - RxQ1 matrix of Q1 representative R-element input vectors.
  • T - SNxQ2 matrix of Q2 representative SN-element target vectors.
  • Si - Sizes of N-1 hidden layers, S1 to S(N-1), default = [].
(Output layer size SN is determined from T.) and returns an N layer feed-forward backprop network.
This a description that i found .So i follow the instructions to create a neural network with one hidden layer composed of 6 nodes .
trainInput=[1 0.4 0.2 0.7]
trainOutput=[0.8 ]
chrom=[0.5 0.6 0.8 0.6 0.7 0.9 0.8 0.4 0.5 0.9 0.9;
0.1 0.7 0.6 0.7 0.9 0.5 0.9 0.2 0.4 0.5 0.9];
X=chrom(1,:);
net=newff(minmax(trainInput'),trainOutput',6);
trainInput =
1.0000 0.4000 0.2000 0.7000
trainOutput =
0.8000
>> net.IW
ans =
[6x0 double]
[]
>> net.LW
ans =
[] []
[0x6 double] []
>> net.b
ans =
[6x1 double]
[0x1 double]
I didn't underdtand what does this notation means :
net.IW
ans =
[6x0 double]
[]
it seems there is no connection with input ,i entered 4 input why i just have 2 cell ?
  1 comentario
Greg Heath
Greg Heath el 1 de Sept. de 2012
Editada: Greg Heath el 1 de Sept. de 2012
The description you mention is either innaccurate or you have misinterpreted it.
Where, exactly, is ist?
Try to duplicate the results from the one or more of the demos and/or examples in the NN TBX.
What version do you have?
newff is now osolete, do you have either
1. The later versions newfit (regression & curvefitting) or newpr ( classification & pattern recognition)
or
2. The latest versions fitnet (regression & curvefitting) or patternnet ( classification & pattern recognition)

Iniciar sesión para comentar.

Respuesta aceptada

Walter Roberson
Walter Roberson el 1 de Sept. de 2012
One cell per layer, it appears to me.
You can view the contents by requesting net.b{1} and net.b{2}

Más respuestas (3)

Greg Heath
Greg Heath el 4 de Sept. de 2012
1. You need the same number of training targets as you have inputs.
[I N ] = size(trainInputs)
[ O N ] = size(trainOutputs)
This will result in Neq = N*O training equations
2. Correct your I-H-O network creation command
net = newff(trainInput, trainOutput, H)
This will automatically result in Nw = (I+1)*H+(H+1)*O random initial weights. For (I,H,O) = (1,6,1), Nw = 12+7 = 19
3. You need to train the net to solve the Neq equations from (trainInputs,trainOutputs)for Nw unknown final weights.
net = train(net,trainInputs,trainOutputs);
4. Don't expect good results unless 0.7*N >> Nw = 19. If you cannot substantially increase the amount of training data,decrease H.
5. Try one or more of the examples or demos in the documentation.
Hope this helps.
Greg

Mariem Harmassi
Mariem Harmassi el 9 de Sept. de 2012
think u for answering i have resolved the problem .and my code can genrate good results . But how can I randomly divide my dataset into k parts ??

Greg Heath
Greg Heath el 10 de Sept. de 2012
Please do not use the answer space for comments and/or asking additional unrelated questions.
The zeros in the weight vector cell components do not occur when the input and output data matrices have the same number of columns. I have not checked the source code to determine why.
The answer to your second question is:
help cvpartition
doc cvpartition
The documentation contains examples of implementing k-fold crossvalidation with the classify function.
However, there are no NN examples in the documentation. Nevertheless, I have written straightforward code that implements NN k-fold crossvalidation.
Try searching in the Newsgroup archives.
Thank you for reconsidering your official accepted answer.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by