cross validation in neural network using K-fold

4 visualizaciones (últimos 30 días)
Mustafa Al-Nasser
Mustafa Al-Nasser el 17 de Jul. de 2019
Comentada: Mustafa Al-Nasser el 18 de Jul. de 2019
Dear All;
i am using neural network for classification but i need to use instead of holdout option , K-fold.
i use cvparatition command to do that , which parameter of neural network shall i change to enable K-Fold option
the code
c = cvpartition(length(input1),'KFold',10)
net=patternnet(100)
net=train(net,input',Target_main')

Respuestas (1)

Greg Heath
Greg Heath el 18 de Jul. de 2019
%i am using neural network for classification but i need to use instead of
holdout option , K-fold.
==> FALSE!. You mean you WANT to use K-fold.
% i use cvparatition command to do that , which parameter of neural
network shall i change to enable K-Fold option the code
%c = cvpartition(length(input1),'KFold',10)
% net=patternnet(100)
==> WRONG! numH = 100 is ridiculously large.
There is no excuse for this. There are numerous examples in both the
NEWSGROUP and ANSWERS on how to choose a reasonable value
for numH.
Greg
  1 comentario
Mustafa Al-Nasser
Mustafa Al-Nasser el 18 de Jul. de 2019
Dear Greg;
i am takling about K-fold cross valdation technique for neural network
the defualt option is holdout one which hold certain perecantge for testing and valdiation
in my example, i need to use this technuque in my code
my problem is how to run code for 10 folds, shall repeat the excuation 10 time using for loop and take the average of 10 runs
for number of neourons , i know this big but the data set large, this was just trail , forget about it
i wrote the below code which can do 1 fold only, so, how can we run it for all fold and take the avergae
c = cvpartition(length(input1),'KFold',10)
trainData =input(training(c),:);
testData = input(test(c),:);
net=patternnet(50)
net=train(net,trainData,Target_main)

Iniciar sesión para comentar.

Categorías

Más información sobre Sequence and Numeric Feature Data Workflows en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by