cross validation in neural network using K-fold
    5 visualizaciones (últimos 30 días)
  
       Mostrar comentarios más antiguos
    
Dear All;
i am using neural network for classification but i need to use instead of holdout option , K-fold.
i use cvparatition command to do that , which parameter of neural network shall i change to enable K-Fold option
the code
c = cvpartition(length(input1),'KFold',10)
 net=patternnet(100)
 net=train(net,input',Target_main')
0 comentarios
Respuestas (1)
  Greg Heath
      
      
 el 18 de Jul. de 2019
        %i am using neural network for classification but i need to use instead of 
holdout option , K-fold. 
==> FALSE!. You mean you WANT to use K-fold.
% i use cvparatition command to do that , which parameter of neural 
network shall i change to enable K-Fold option the code
%c = cvpartition(length(input1),'KFold',10)
% net=patternnet(100)
==> WRONG! numH = 100 is ridiculously large.
There is no excuse for this. There are numerous examples in both the 
NEWSGROUP and ANSWERS on how to choose a reasonable value 
for numH.
Greg
Ver también
Categorías
				Más información sobre Deep Learning Toolbox en Help Center y File Exchange.
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!

