Borrar filtros
Borrar filtros

How do you update the legend of Figure 2 and Figure 3 instead of Figure 1?

3 visualizaciones (últimos 30 días)
Need:
Figure 1 should have red circle data points called "Iris Data (red)" with correct legend.
Figure 2 should have blue circle data points called "Synthetic Iris Data (blue)" with correct legend.
Figure 3 should be a combination of both graphs with correct legend.
(Iris.xls data set is attached)
Here is my erroneous code that displays the wrong legends:
%% The column vector, |species|, consists of iris flowers of three
% different species, setosa, versicolor, virginica. The double matrix
% |features| consists of four types of measurements on the flowers, the length
% and width of sepals and petals in centimeters, respectively.
features = xlsread("iris.xls", 2); %sepal length, sepal width, petal length, petal width
labels = xlsread("iris.xls", 3); % flower type classes
species = cell(size(labels));
species(labels==1)={'Setosa'};
species(labels==2)={'Versicolor'};
species(labels==3)={'Virginica'};
% The names of features are stored in an array.
feature_names = ["Sepal Length", "Sepal Width", "Petal Length", "Petal Width"];
%% Features
% Use petal length (third column in |features| ) and petal width (fourth column
% in |features| ) measurements. Save these as variables PL and PW,
% respectively.
% 4 features & 3 classes
SL = features(:,1);
SW = features(:,2);
PL = features(:,3);
PW = features(:,4);
%% Recall Original Iris Data
% Recall Iris Setosa
Class1 = features(1:50,:);
SLClass1 = features(1:50,1);
SWClass1 = features(1:50,2);
PLClass1 = features(1:50,3);
PWClass1 = features(1:50,4);
% Recall Iris Versicolor
Class2 = features(51:100,:);
SLClass2 = features(51:100,1);
SWClass2 = features(51:100,2);
PLClass2 = features(51:100,3);
PWClass2 = features(51:100,4);
% Recall Iris Virginica
Class3 = features(101:150,:);
SLClass3= features(101:150,1);
SWClass3= features(101:150,2);
PLClass3= features(101:150,3);
PWClass3= features(101:150,4);
%% Synthetic Data
%% Class 1 - SL vs. PW
% Plot Original Class 1 - Iris SL vs. PW.
figure
plotIris = scatter(SLClass1,PWClass1,'r')
hold on;
set(plotIris,{'DisplayName'},{'Iris Data (red)'})
legend show;
title('Original Iris Data - Class 1 - Sepal Length vs. Petal Width');
xlabel('Sepal Length');
ylabel('Petal Width');
hold off;
%% Generate Random Data
% Create Random Data with 100 Additional Observations for Each Class
% Class 1 Randoms. Generate 100 extra observations. Random Data must be 100 x 4 and normally distributed.
Class1_r = randn(100,4);
%Class1_r = randi([0 1],100,4); % Randi did not create a truly random data.
SLClass1_r = Class1_r(:,1);
SWClass1_r = Class1_r(:,2);
PLClass1_r = Class1_r(:,3);
PWClass1_r = Class1_r(:,4);
a = min(SLClass1_r(:));
b = max(SLClass1_r(:));
ra = 0.0886;
rb = 0.4684;
SLClass1_Normalized = (((ra-rb) * (SLClass1_r - a)) / (b - a)) + rb;
a = min(PWClass1_r(:));
b = max(PWClass1_r(:));
ra = -0.9200;
rb = -0.5200;
PWClass1_Normalized = (((ra-rb) * (PWClass1_r - a)) / (b - a)) + rb;
% Plot Synthetic Data - Class 1 - SL vs. PW
figure(2)
Class1_Synthetic = scatter(SLClass1_Normalized,PWClass1_Normalized,'b')
hold on;
set(plotIris,{'DisplayName'},{'Synthetic Iris Data (blue)'})
legend show
title('Synthetic Iris Data - Class 1 - Sepal Length vs. Petal Width');
xlabel('Sepal Length');
ylabel('Petal Width');
% Plot Combined Graphs - Class 1 - SL vs. PW
figure;
plotIris = scatter(SLClass1,PWClass1,'r')
set(plotIris,{'DisplayName'},{'Iris Data (red)'})
hold on;
legend show
title('Class 1 - SL vs. PW - Original & Synthetic Data');
xlabel('Sepal Length');
ylabel('Petal Width');
Class1_Synthetic = scatter(SLClass1_Normalized,PWClass1_Normalized,'b')
set(plotIris,{'DisplayName'},{'Synthetic Iris Data (blue)'})
legend show
hold off;
Figure1 Legend Error:Figure1_updated.png
Figure2 Legend Error:
Figure2.png
Figure3 Legend Error:
Figure3.png

Respuesta aceptada

Kristin Contreras
Kristin Contreras el 25 de Jul. de 2019
Editada: Kristin Contreras el 25 de Jul. de 2019
When using the set function for Figure 2 and Figure 3,I had accidentally kept referring to the same plot name for Figure 1. Here is my corrected code.
%% The column vector, |species|, consists of iris flowers of three
% different species, setosa, versicolor, virginica. The double matrix
% |features| consists of four types of measurements on the flowers, the length
% and width of sepals and petals in centimeters, respectively.
features = xlsread("iris.xls", 2); %sepal length, sepal width, petal length, petal width
labels = xlsread("iris.xls", 3); % flower type classes
species = cell(size(labels));
species(labels==1)={'Setosa'};
species(labels==2)={'Versicolor'};
species(labels==3)={'Virginica'};
% The names of features are stored in an array.
feature_names = ["Sepal Length", "Sepal Width", "Petal Length", "Petal Width"];
%% Features
% Use petal length (third column in |features| ) and petal width (fourth column
% in |features| ) measurements. Save these as variables PL and PW,
% respectively.
% 4 features & 3 classes
SL = features(:,1);
SW = features(:,2);
PL = features(:,3);
PW = features(:,4);
%% Recall Original Iris Data
% Recall Iris Setosa
Class1 = features(1:50,:);
SLClass1 = features(1:50,1);
SWClass1 = features(1:50,2);
PLClass1 = features(1:50,3);
PWClass1 = features(1:50,4);
% Recall Iris Versicolor
Class2 = features(51:100,:);
SLClass2 = features(51:100,1);
SWClass2 = features(51:100,2);
PLClass2 = features(51:100,3);
PWClass2 = features(51:100,4);
% Recall Iris Virginica
Class3 = features(101:150,:);
SLClass3= features(101:150,1);
SWClass3= features(101:150,2);
PLClass3= features(101:150,3);
PWClass3= features(101:150,4);
%% Synthetic Data
%% Class 1 - SL vs. PW
% Plot Original Class 1 - Iris SL vs. PW.
figure
plotIris1 = scatter(SLClass1,PWClass1,'r')
hold on;
set(plotIris1,{'DisplayName'},{'Iris Data (red)'})
legend show;
title('Original Iris Data - Class 1 - Sepal Length vs. Petal Width');
xlabel('Sepal Length');
ylabel('Petal Width');
hold off;
%% Generate Random Data
% Create Random Data with 100 Additional Observations for Each Class
% Class 1 Randoms. Generate 100 extra observations. Random Data must be 100 x 4 and normally distributed.
Class1_r = randn(100,4);
%Class1_r = randi([0 1],100,4); % Randi did not create a truly random data.
SLClass1_r = Class1_r(:,1);
SWClass1_r = Class1_r(:,2);
PLClass1_r = Class1_r(:,3);
PWClass1_r = Class1_r(:,4);
a = min(SLClass1_r(:));
b = max(SLClass1_r(:));
ra = 0.0886;
rb = 0.4684;
SLClass1_Normalized = (((ra-rb) * (SLClass1_r - a)) / (b - a)) + rb;
a = min(PWClass1_r(:));
b = max(PWClass1_r(:));
ra = -0.9200;
rb = -0.5200;
PWClass1_Normalized = (((ra-rb) * (PWClass1_r - a)) / (b - a)) + rb;
% Plot Synthetic Data - Class 1 - SL vs. PW
figure(2)
Class1_Syntheticslpw = scatter(SLClass1_Normalized,PWClass1_Normalized,'b')
hold on;
set(Class1_Syntheticslpw,{'DisplayName'},{'Synthetic Iris Data (blue)'})
legend show
title('Synthetic Iris Data - Class 1 - Sepal Length vs. Petal Width');
xlabel('Sepal Length');
ylabel('Petal Width');
% Plot Combined Graphs - Class 1 - SL vs. PW
figure;
plotIris1 = scatter(SLClass1,PWClass1,'r')
set(plotIris1,{'DisplayName'},{'Iris Data (red)'})
hold on;
legend show
title('Class 1 - SL vs. PW - Original & Synthetic Data');
xlabel('Sepal Length');
ylabel('Petal Width');
Class1_Synthetic_slpw = scatter(SLClass1_Normalized,PWClass1_Normalized,'b')
set(Class1_Synthetic_slpw,{'DisplayName'},{'Synthetic Iris Data (blue)'})
legend show
hold off;

Más respuestas (2)

Mario Chiappelli
Mario Chiappelli el 24 de Jul. de 2019
I have always used the legend function in the following way:
legend('nameOfGraphOne','nameOfGraphTwo',etc);
I see you are implementing a legend in the same line as the plot. I believe if you eliminate that and insert a legend using the legend function, it should work.

Mario Chiappelli
Mario Chiappelli el 25 de Jul. de 2019
No you don't need to. Here is some example code that I used for a plot for a class project.
figure(1);
hold on
plot(data_time,data_hour,"r-");
plot(data_time2,data_hour2,'r--');
xlabel('time(s)');
ylabel('light intensity in DANA 303');
hold off
ylim([0 10000]);
title('light intensity vs time (s) in DANA 303');
legend('Marios Sensor','Devins Sensor')

Categorías

Más información sobre Installation and Operational Settings en Help Center y File Exchange.

Etiquetas

Productos


Versión

R2017a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by