reverse 3D euclidean distance

11 visualizaciones (últimos 30 días)
Ferdinand Grosse-Dunker
Ferdinand Grosse-Dunker el 25 de Jul. de 2019
Comentada: Star Strider el 25 de Jul. de 2019
Hi there,
I am standing at an unknown point U(x,y,z) in the room. I can measure 3 (euclidean) distances D to 3 known points P in the room. I try to find the point, where I am at. My equation system looks like this:
(x-3)²+(y-1)²+(z-4)²=D1²=81
(x-12)²+(y-1)²+(z-4)²=D2²=36
(x-34)²+(y-2)²+(z-4)²=D3²=601
I can put the known points into a matrix P, the measured distance in a vector D:
P=[3 1 4;12 1 4; 34 2 4]
P =
3 1 4
12 1 4
34 2 4
D=[81 36 601]
Do you know how I can find U(x,y,z) ?
I am not sure if I can use
D = pdist(X,'euclidean');

Respuesta aceptada

Star Strider
Star Strider el 25 de Jul. de 2019
Try this:
P=[3 1 4;12 1 4; 34 2 4];
D=[81 36 601];
fcn = @(b,x) (b(1)-x(:,1)).^2 + (b(2)-x(:,2)).^2 + (b(3)-x(:,3)).^2;
B = fminsearch(@(b) norm(D(:) - fcn(b,P)), [1; 1; 1])
producing:
B =
10.0000
5.0000
-0.0000
that are the (x,y,z) coordinates, as best fminsearch can calculate them.
  2 comentarios
Ferdinand Grosse-Dunker
Ferdinand Grosse-Dunker el 25 de Jul. de 2019
Works perfekt, thank you. Can you comment on the function you use?
Star Strider
Star Strider el 25 de Jul. de 2019
As always, my pleasure.
The documentation for the fminsearch function is at the link. It is an unconstrained optimiser that uses a derivative-free method to find the minimum.
The code I use for my objective function ‘fcn’ and as an argument to fminsearch are Anonymous Functions. They are quite useful for coding short functions, although they have their limitations.
I use the norm function so that the fminsearch function finds the minimum value that satisfies the sum-of-squares criterion (since this is essentially a curve-fiting problem).

Iniciar sesión para comentar.

Más respuestas (1)

Akira Agata
Akira Agata el 25 de Jul. de 2019
There should be 2 answers.
Here is my try.
P = [3 1 4;12 1 4; 34 2 4];
D = [81 36 601];
func = @(x) (vecnorm(x - P(1,:))-sqrt(D(1)))^2+...
(vecnorm(x - P(2,:))-sqrt(D(2)))^2+...
(vecnorm(x - P(3,:))-sqrt(D(3)))^2;
x1 = fminsearch(func,[1 1 1]);
x2 = fminsearch(func,[10 10 10]);
>> x0
x0 =
10.0000 5.0000 -0.0000
>> x1
x1 =
10.0000 5.0000 8.0000

Productos


Versión

R2018b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by