permutations of a matrix

12 visualizaciones (últimos 30 días)
sam plant
sam plant el 23 de Ag. de 2019
Editada: Bruno Luong el 23 de Ag. de 2019
Hello,
for a linear system equation of Ax = B with A dimensions 5x5 and x, a column vector. Let's say A is a binary matrix of 1's and 0's and i had the cases of having 3 1's and the rest 0's in A, or 5 1's and the rest 0's. How would I calculate the values of B for all combinations of A consisting of 3 or 5 1's?
  2 comentarios
David Hill
David Hill el 23 de Ag. de 2019
% broot-force for 3 1's if I understood you correctly.
x=[1 0 1 0 1]';% any column vector
y=nan(5,1,2300);
z=zeros(5);
count=0;
for i=1:25
z(i)=1;
for j=i+1:25
z(j)=1;
for k=j+1:25
z(k)=1;
count=count+1;
y(:,1,count)=z*x;
z(k)=0;
end
z(j)=0;
end
z(i)=0;
end
Stephen23
Stephen23 el 23 de Ag. de 2019
@David Hill: you should put that as an answer.
There are also answers on this forum that discuss how you could generalize that concept, so that it does not use a fixed number of nested for loops:

Iniciar sesión para comentar.

Respuesta aceptada

Stephen23
Stephen23 el 23 de Ag. de 2019
Editada: Stephen23 el 23 de Ag. de 2019
Based on this efficient concept for generating a matrix of binary combinations:
you can efficiently create a matrix of the required combinations, by incrementally adding to a matrix and removing the superfluous rows at each loop iteration, thus avoiding any out-of-memory issues (as would happen if you tried to generate all combinations at once).
s = 3; % how many 1's in matrix.
x = [1;2;3;4;5]; % your column vector.
Generate matrix of all combinations:
n = numel(x); % matrix has size n*n
m = [0;1]; % seed matrix.
for k = 2:n*n
r = size(m,1);
m = [zeros(r,1),m;ones(r,1),m];
m(sum(m,2)>s,:) = []; % remove rows where sum > s
end
m(sum(m,2)~=s,:) = []; % remove rows where sum ~= s
For s=3 I get 2300 rows (i.e. each row is a unique combination), and for s=5 I get 53130 rows. You can easily check that each row sums to s (i.e. 3 or 5):
>> all(sum(m,2)==3)
ans = 1
and that the rows are unique:
>> size(unique(m,'rows'),1)==size(m,1)
ans = 1
Then you can simply loop over those rows, reshape each row into a matrix, and do whatever operations you want:
r = size(m,1);
B = cell(r,1); % preallocate!
for k = 1:r
A = reshape(m(k,:),n,n);
B{k} = A*x; % whatever operations you want...
end
The first few outputs are:
>> B{1:3}
ans =
0
0
5
5
5
ans =
0
5
0
5
5
ans =
0
5
5
0
5
Do this once for s=3, and once for s=5.
  1 comentario
sam plant
sam plant el 23 de Ag. de 2019
This is brilliant, thank you!

Iniciar sesión para comentar.

Más respuestas (1)

Bruno Luong
Bruno Luong el 23 de Ag. de 2019
Editada: Bruno Luong el 23 de Ag. de 2019
x = (1:5)';
n = size(x,1);
m = 5; % size of b
s = 3; % target sum(A(:))
[i,k] = ind2sub([m,n],nchoosek(1:m*n,s));
j = repmat((1:size(i,1))',s,1);
% each column of B is a possible vector of the set
% { b=A*x: A (m x n) binary matrix such that sum(A(:))=s }
B = accumarray([i(:) j], x(k(:)));

Categorías

Más información sobre Particle Swarm en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by