Deep learning with vector output
3 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
I need to learn a mapping from 28x28 images into a vector of 45 floating-point numbers. This is not really classification as the numbers range between -1 and 1.
When designing a deep neural network, what output layer could I use?
Best,
Samuli Siltanen
0 comentarios
Respuestas (1)
Asvin Kumar
el 29 de Ag. de 2019
You can use the tanhLayer to obtain output values in the range of –1 to 1.
Here’s the documentation for more information: https://www.mathworks.com/help/deeplearning/ref/nnet.cnn.layer.tanhlayer.html
3 comentarios
Asvin Kumar
el 30 de Ag. de 2019
For the output layer, you can use a regressionLayer after the tanhLayer. This will produce predictions in the required range and compute the half-mean-squared-error loss.
Here's a link to the documentation: https://www.mathworks.com/help/deeplearning/ref/regressionlayer.html
Ver también
Categorías
Más información sobre Deep Learning Toolbox en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!