How can I change the response to forced excitation?

1 visualización (últimos 30 días)
sam plant
sam plant el 27 de Ag. de 2019
Comentada: Anmol Dhiman el 5 de Sept. de 2019
function Structural_drift
% Define initial conditions x(0) & x'(0)
x0 = [0 1];
% Time interval
t = [0 120];
% Solve equation of motion
[T, X] = ode45(@EOM, t, x0);
plot(T, X(:,1), T, X(:,2));
% EOM function & variables
function dx = EOM(t, x)
% Define initial conditions x(0) & x'(0)
% Time interval
M =87500; % Mass (kg)
k = 20000; % Stiffness value
c = 170; % Damping constant of structure
Cd = 5000;
Fd = Cd*x(2); %damping force
f=5; %forcing frequency in Hz
w=2*pi*f; %forcing frequency
F = 500000*sin(w*t) ; %excitation force
term1 = F;
term2 = k*x(1);
term3 = c*x(2);
term4 = Fd;
term5 = M;
dx = [x(2); ((term1 - term2 - term3 - term4)/(term5))]; % Equation of motion
end
end
When using ODE45 for an equation of motion. The forcing amplitude is F. When i change this value the peak value of displacement from the solver isn't changing, it's always the same value regardless of the force size?
any help would be seriously appreciated
  1 comentario
Anmol Dhiman
Anmol Dhiman el 5 de Sept. de 2019
I am unable to reproduce the above issue as I am getting different peak value of displacement as shown in the figures below. Can you provide an example with plots explaining the issue.
img2_forced_excitation.png
img3_forced_excitation.png
img1_forced_excitation.png

Iniciar sesión para comentar.

Respuestas (0)

Categorías

Más información sobre Numerical Integration and Differential Equations en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by