How can we create two vectors have normally distributed random entries with zero mean?
2 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Omar B.
el 8 de Sept. de 2019
How can we create two vectors have normally distributed random entries with zero mean , and they are scaled so that
in Matlab.
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/237984/image.png)
0 comentarios
Respuesta aceptada
Bruno Luong
el 8 de Sept. de 2019
I correct the flaw of dpb method
U=randn(10,1);
V=randn(10,1);
ps=U.'*V;
a=sqrt(abs(ps));
U=(sign(ps)/a)*U;
V=(1/a)*V;
Más respuestas (1)
dpb
el 8 de Sept. de 2019
>> uv=randn(1000,2);
>> uv=uv/sqrt(sum(uv(:,1).*uv(:,2)));
>> uv(:,1).'*uv(:,2)
ans =
1.0000
>> mean(uv)
ans =
0.0025 0.0091
>>
4 comentarios
Bruno Luong
el 8 de Sept. de 2019
Editada: Bruno Luong
el 8 de Sept. de 2019
the sqrt() might be imaginary (1/2 chance)
>> uv=randn(10,2); uv=uv/sqrt(sum(uv(:,1).*uv(:,2)))
uv =
0.0000 + 0.3856i 0.0000 + 0.0703i
0.0000 + 0.9468i 0.0000 - 1.0239i
0.0000 + 0.0416i 0.0000 - 0.9650i
0.0000 + 0.1552i 0.0000 + 0.0931i
0.0000 - 0.1422i 0.0000 + 0.4418i
0.0000 - 0.7345i 0.0000 + 1.1256i
0.0000 - 0.4265i 0.0000 - 0.4973i
0.0000 - 0.9666i 0.0000 - 0.0169i
0.0000 + 0.5398i 0.0000 + 0.8718i
0.0000 + 0.6400i 0.0000 + 0.2477i
John D'Errico
el 8 de Sept. de 2019
Editada: John D'Errico
el 8 de Sept. de 2019
Normally distributed, with zero mean. You don't say if the sample mean should be zero, or the population mean zero. Normal samples from randn have a zero popiulation mean. But the sample mean just has an expected value of zero. A subtle difference that few people seem to appreciate when they lack the proper background.
Anyway, it is easy enough to scale them so the dot product is also 1. I could keep them as separate vectors, since that seems to have confused you, but you need to LEARN TO USE MATRICES.
uv = randn(1000,2);
dp = uv(:,1)' * uv(:,2);
uv = uv/sqrt(abs(dp));
if dp < 0
uv(:,1) = -uv(:,1);
end
As you can see, the dot product is 1. Note that the code I gave you will not end up 50% of the time with an imaginary square root.
uv(:,1)'*uv(:,2)
ans =
1
mean(uv)
ans =
-0.00248985528111534 -0.00172138844051432
The sample means are not identically zero, but you were not specific there, and that is simply repaired.
Do you really think you need disrinctly named vectors? LEARN TO USE MATLAB! The mat in MATLAB stand for matrix.
u = uv(:,1);
v = uv(:,2);
Ver también
Categorías
Más información sobre Spline Postprocessing en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!