Convolution of two probability density function
9 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Hello:
I am interested to add two independent random variables, X1 and X2, described by kernel density functions. Is there any way to find out the joint PDF using convolution process in MATLAB?
0 comentarios
Respuestas (1)
Jeff Miller
el 24 de Sept. de 2019
I don't know whether you can do this directly in MATLAB. If not, you can do it using the Cupid toolbox. Here is an example:
% Generate some data to use for an example:
data1 = randn(200,1);
data2 = 20*rand(300,1);
% Make the corresponding MATLAB kernel distribution objects:
kern1 = fitdist(data1,'Kernel');
kern2 = fitdist(data2,'Kernel');
% Derive Cupid distribution objects from MATLAB ones:
ckern1 = dMATLABc(kern1);
ckern2 = dMATLABc(kern2);
% Make a Convolution distribution from the Cupid distribution objects:
convkern = Convolution(ckern1,ckern2);
% Compute various properties of the convolution distribution:
a = convkern.Median
b = convkern.Mean
c = convkern.Variance
d = convkern.PDF(12)
e = convkern.CDF(13)
convkern.PlotDens; % Plot PDF and CDF
% et cetera
0 comentarios
Ver también
Categorías
Más información sobre Contour Plots en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!