how to run function 1000 times to find minimum
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
Kangkeon Jeon
el 14 de Oct. de 2019
Comentada: Rena Berman
el 28 de Oct. de 2019
i have a main function that eventually gives a score with randomized grouping of names. score is just one number calculated through function. I want to run this 1000 times to have 1000 scores and want to know minimum and know which grouping gave that score.
how can i do this?
3 comentarios
Stephen23
el 16 de Oct. de 2019
Original question (from Google Cache):
i have a main function that eventually gives a score with randomized grouping of names. score is just one number calculated through function. I want to run this 1000 times to have 1000 scores and want to know minimum and know which grouping gave that score.
how can i do this?
Respuesta aceptada
per isakson
el 14 de Oct. de 2019
Editada: per isakson
el 14 de Oct. de 2019
Something like
S = struct( 'score', cell(1,1000), 'grouping', cell(1,1000) );
for jj = 1 :1000
S(jj).grouping = randomized_grouping_of_names();
S(jj).score = main_function( S(jj).grouping );
end
[~,ix_min] = min([S.score]);
S(ix_min)
In response to comment
What's in the file, FileName ?
FileName = ???
groupsize = ???
data = readtable( FileName, 'ReadRowNames', true );
number_of_people = size(data, 2);
number_of_groups = ceil( number_of_people / groupsize );
S = struct( 'score', cell(1,N), 'grouping', cell(1,N) );
for jj = 1 : N
S(jj).grouping = generate_random_grouping( data, number_of_people, number_of_groups );
S(jj).score = score_grouping( data, S(jj).grouping, ~ );
end
[~,ix_min] = min([S.score]);
S(ix_min)
No good.
With substatial help from Walter
>> subject_scores = Jeon_clust( 'Biol_528_2019_sheet.xlsx', 3 )
subject_scores =
struct with fields:
score: 0.66667
grouping: {1×8 cell}
where
function S = Jeon_clust( FileName, groupsize )
N = 1000;
data = readtable( FileName, 'ReadRowNames', true );
number_of_people = size(data, 2);
number_of_groups = ceil( number_of_people / groupsize );
S = struct( 'score', cell(1,N), 'grouping', cell(1,N) );
for jj = 1 : N
S(jj).grouping = generate_random_grouping( data, number_of_people, number_of_groups );
S(jj).score = sum_total_subject_score( data, S(jj).grouping, number_of_groups );
end
[~,ix_min] = min([S.score]);
S = S(ix_min);
end
and
function stss = sum_total_subject_score( data, grouping, number_of_groups )
subject_scores = score_grouping(data, grouping,number_of_groups);
group_ = [subject_scores{1:number_of_groups}];
group_scores = group_.';
diff_score = diff(group_scores);
total_subject_score = abs(sum(diff_score));
stss = sum(total_subject_score);
end
5 comentarios
Más respuestas (1)
Walter Roberson
el 14 de Oct. de 2019
N = 1000;
all_scores = zeros(1,N);
all_groupings = cell(1,N);
for iter = 1 : N
[all_scores(iter), all_groupings{N}] = generate_one_grouping_and_score_it();
end
[minscore, idx] = min(all_scores);
grouping_for_minscore = all_groupings{idx};
disp(minscore)
disp(grouping_for_minscore)
4 comentarios
Kangkeon Jeon
el 14 de Oct. de 2019
Editada: Kangkeon Jeon
el 16 de Oct. de 2019
Walter Roberson
el 14 de Oct. de 2019
function [best_score, best_grouping] = Jeon_clust(FileName, groupsize)
data = readtable(FileName, 'ReadRowNames', true);
number_of_people = size(data, 2);
number_of_groups = ceil(number_of_people / groupsize);
number_of_questions = size(data, 1);
N = 1000;
all_scores = zeros(1,N);
all_groups = cell(1,N);
for iter = 1 : N
grouping = generate_random_grouping(data, number_of_people, number_of_groups);
subject_scores = score_grouping(data, grouping,number_of_groups);
group_ = [subject_scores{1:number_of_groups}];
group_scores = group_.';
diff_score = diff(group_scores);
total_subject_score = abs(sum(diff_score));
score = sum(total_subject_score);
all_scores(iter) = score;
all_groups{iter} = grouping;
end
[best_score, idx] = min(all_scores);
best_grouping = all_groups{idx};
Ver también
Categorías
Más información sobre Photonics en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!