Can someone help me find the zeros of this function?

2 visualizaciones (últimos 30 días)
adr58_1
adr58_1 el 19 de Oct. de 2019
Let's define f(z) over the complex plane except where a =1. N.B.: z= a +b*i, where a and b are real numbers, and i is the imaginary number i = sqrt(-1).
f(z) = {\displaystyle \f (s)={\frac {1}{\Gamma (s)}}\int _{0}^{\infty }{\frac {x^{s-1}}{e^{x}-1}}\,\mathrm {d} x}
The question is for what values is f(z) = 0?
The values where z= -2*k + b*i, where k is a natural integer have been shown to be zeros for every b element of real numbers,
but there are other zeros such that if complex 'c' is a zero of f(z) then 'c = q + b*i', where q is a real number such as '0 < q < 1' and b is an unrestricted real number.
Help me find all the zeros please,
Thanks

Respuestas (0)

Categorías

Más información sobre Gamma Functions en Help Center y File Exchange.

Etiquetas

Productos


Versión

R2019b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by