finite difference method code

4 visualizaciones (últimos 30 días)
Ronald Aono
Ronald Aono el 4 de Nov. de 2019
Respondida: Walter Roberson el 4 de Nov. de 2019
% set domains limits and boundary conditions
xo = pi/2; xf = pi; yxo = 1; yxf = 1; N = 10;
% compute interval size and discrete x vector
dx = (xf-xo)/N; dx2 = dx*dx; x = (xo+dx):dx:xf;
% analytica solution (exact)
xe = linspace(xo,xf,N);
ye = (pi./(2*xe)).*(sin(xe) - 2*cos(xe));
% arranging the matrix a
%node 1
a(1,1)=dx2-2; a(1,2)=1+(dx/(xo+dx)); b(1)= ((yxo*dx) /(xo*dx))-yxo;
for i = 2:N-1
a(i,i-1) = (1-(dx/x(i)));
a(i,i) = dx2-2;
a(i,i+1) = (1+(dx/x(i)));
b(i)=0;
end
a(N,N-1)=(2*xf+2*dx)/xf; a(N,N-2)=-1; b(N)=yxf*dx2+yxf+((2*yxf*dx)/xf);
yi=a\b;
i keep getting the following error code
finite_1
Error using \
Matrix dimensions must agree.
Error in finite_1 (line 26)
yi=a\b

Respuesta aceptada

Walter Roberson
Walter Roberson el 4 de Nov. de 2019
  • If A is a rectangular m-by-n matrix with m ~= n, and B is a matrix with m rows, then A\B returns a least-squares solution to the system of equations A*x= B.
Your A is 10 x 10, and your b is 1 x 10, which has 1 row, rather than the 10 rows needed to match the 10 rows of a
It would be legal to use a\b' but you will need to decide whether that is meaningful for your situation.

Más respuestas (0)

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by