Trouble Creating a Vector using a for loop with matrices

13 visualizaciones (últimos 30 días)
Andrew Knight
Andrew Knight el 7 de Nov. de 2019
Comentada: Stephen23 el 7 de Nov. de 2019
I'm having trouble creating a vector of answers with a for loop involving matrices. When I call on w, it gives me different values than if I were to call on a specific part of w.
B1=[1 0; 0 -7.5];
D1=[0 0;0 10];
X1=[0 0;0 -2.5];
B2=[49.8 0;-0.127 -50];
D2=[25 0;0 25];
A2=[25 0;0 25];
B3=[49.8 0;-0.127 -50];
D3=[25 0;0 25];
A3=[25 0;0 25];
B4=[49.8 0;-0.127 -50];
D4=[25 0;0 25];
A4=[25 0;0 25];
B5=[7.5 0;0 1];
A5=[-10 0;0 0];
Y5=[2.5 0;0 0];
o=[0 0;0 0];
%M
M=[B1 D1 X1 o o;A2 B2 D2 o o;o A3 B3 D3 o;o o A4 B4 D4;o o Y5 A5 B5];
Mi=inv(M);
G=[.21;0;0;0;0;0;0;0;0;0.127];
CG=[.1;.1;.1;.1;.1;.1;.1;.1;.1;.1];
%find L
%L=[b1 o o o o;a2 b2 o o o;o a3 b3 o o;o o a4 b4 o;o o y5 a5 b5]
%U=[I -E1 -x1 o o;o I -E2 o o;o o I -E3 o;o o o I -E4;o o o o I]
n=2;
NJ=5;
w=zeros(2*NJ,1);
for j=1
L(1:(j+1),1:(j+1))=B1; %b(1)=B1
U(1:j+1,j+2:j+3)=-inv(L(1:j+1,1:j+1))*D1; %E(1)=D1*inv(-b(1))
U(1:j+1,2*j+3:2*j+4)=-inv(L(1:j+1,1:j+1))*X1; %x(1)=X1*inv(-b(1))
w(1:2)=inv(L(1:j+1,1:j+1))*G(1:2); %ksi(1) = b(1)^-1 * G(1)
end
for j=2:NJ-1
L(2*j-1:2*j,2*j-3:2*j-2)=A2; %a(2)=A2
L(2*j-1:2*j,2*j-1:2*j)=B2+L(2*j-1:2*j,2*j-3:2*j-2)*U(2*(j-1)-1:2*(j-1),2*(j-1)+1:2*(j-1)+2); %b(2)=B2+a(2)*E(1)
U(2*j-1:2*j,2*j+1:2*j+2)=-inv(L(2*j-1:2*j,2*j-1:2*j))*D2; %E(2)=-inv(b(2))*D(2)
w(2*j-1:2*j)=-inv(L(2*j-1:2*j,2*j-1:2*j))*((-G(2*j-1:2*j)+(L(2*j-1:2*j,2*j-3:2*j-2)*w((2*(j-1)-1):(2*(j-1)))))); %ksi(2)=inv(-b(2))*(-G(2)+a(2)*ksi(1))
end
for j=NJ
L(2*j-1:2*j,2*j-5:2*j-4)=Y5; %y(5)=Y5
L(2*j-1:2*j,2*j-3:2*j-2)=A5+L(2*j-1:2*j,2*j-5:2*j-4)*U(2*(j-2)-1:2*(j-2),2*(j-2)+1:2*(j-2)+2); %a(5)=A5+y(5)*E(NJ-2)
L(2*j-1:2*j,2*j-1:2*j)=B5+L(2*j-1:2*j,2*j-3:2*j-2)*U(2*(j-1)-1:2*(j-1),2*(j-1)+1:2*(j-1)+2); %b(5)=B5+a(5)*E(4)
w(2*j-1:2*j)=-inv(L(2*j-1:2*j,2*j-1:2*j))*(-G(2*j-1:2*j)+L(2*j-1:2*j,2*j-3:2*j-2)*w(2*(j-1)-1:2*(j-1))+L(2*j-1:2*j,2*j-5:2*j-4)*w(2*(j-2)-1:2*(j-2)))%-inv(b(5))*(-G(5)+a(5)*w(4)+y*(w(3))
end
%w=inv(L)*G
%C=inv(U)*w
  1 comentario
Stephen23
Stephen23 el 7 de Nov. de 2019
Note: to make your code more efficient and robust you should probably be using mldivide instead of inv and *. Explicit matrix inversion is rarely required (because there are better methods for solving such systems of equations).

Iniciar sesión para comentar.

Respuestas (0)

Categorías

Más información sobre Programming en Help Center y File Exchange.

Productos


Versión

R2019b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by