How do I improve my result of KNN classification using confusion matrix?

4 visualizaciones (últimos 30 días)
youb mr
youb mr el 16 de Nov. de 2019
Comentada: Ridwan Alam el 20 de Nov. de 2019
Hello everyone.
I'm trying to classify a data set containing two classes using a Knn classifer.
and would like to evaluate the performance using its confusion matrix. But how can I use it with the KNN classifier?
This is my code of KNN classifer
model=ClassificationKNN.fit(X,Y,'NumNeighbors',9);
[~,result1]=predict(model,x);
  2 comentarios
Image Analyst
Image Analyst el 16 de Nov. de 2019
Editada: Image Analyst el 16 de Nov. de 2019
You forgot to attach X and Y in a .mat file
save('answers.mat', 'X', 'Y');
Have you tried the "Classification Learner" App on the App tab of the tool ribbon?
You tagged it with image processing. What about this is at all related to image processing???
youb mr
youb mr el 17 de Nov. de 2019
how i can use confusion_matrix in this situation

Iniciar sesión para comentar.

Respuestas (1)

Ridwan Alam
Ridwan Alam el 20 de Nov. de 2019
yhat = predict(model,x);
[C,order] = confusionmat(y,yhat);
Use this help file to understand how to use C and order:
  2 comentarios
youb mr
youb mr el 20 de Nov. de 2019
Error using confusionmat (line 98)
G and GHAT need to have same number of rows
Error in knn (line 189)
C = confusionmat(Y,yhat)
Ridwan Alam
Ridwan Alam el 20 de Nov. de 2019
Here, I am assuming you have trained the model with “X” and “Y”, and are testing with “x” and “y”. “X” and “x” are different data, if in matrix format, they should have same number of columns but different row sizes.
“yhat” is the prediction of your model for test data “x” (not “X”). Confusionmat compares “yhat” with the ground truth or labels “y” (not “Y”) for the test data “x”.

Iniciar sesión para comentar.

Categorías

Más información sobre Statistics and Machine Learning Toolbox en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by