Begginer's Question about matrixes
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
Hugo Pontes
el 16 de Nov. de 2019
Comentada: dpb
el 18 de Nov. de 2019
For context I'm developing a basic car speed controller, in which I'm using the changes in altitude to determine a slope which will slow down the car. The controller will speed up the car when it is under the desired speed.
Anyway,
I have defined functions as matrix of (1,instances) many different different parameters, one of which is pressure
I am trying to define pressure as a function of altitude , with altitude being a matrix (1,n) of the following type:
altitude = [a,a,a,a,a,b,c,d,e,f,g,h,iiiiii] %a plane a slope and a plane again
and then I tried to calculate the pressure matrix as function of the altitude in each point as well as the difference in pressure between each step:
for s=1:it
press(1,s)=Ps*(1+(Lb/Ts)*altitude(1,s))^(-g0*M/R*Lb); %if youre not familiar with this formula, all the remaining paramters are constants
if s~=it
dp(1,s+1)=k1*(press(1,s+1))-k1*(press(1,s));% k is a gain parameter that I thought might fix this
end
end
but when I plot the pressure as function of altitude I get a downwards slope when I'm pretty sure I should be getting a quadratic
additionally the dp matrix should resemble a derivative of the pressure matrix and it is constant throughout time.
As I said I'm a begginer and perhaps this is not the best method for relating parameters with one another, so I'm open to suggestions.
Additionally I have no idea why it doesn't work so If somebody could clear it up for me I would appreciate it!
Thank you in advance
1 comentario
Respuesta aceptada
dpb
el 16 de Nov. de 2019
Editada: dpb
el 16 de Nov. de 2019
press=Ps*(1+(Lb/Ts)*altitude).^(-g0*M/R*Lb);
dp=diff(press);
"The Matlab way" is to use the vectorized abilities built into operations. NB: the "dot" operator .^ for exponentiation of the vector elementwise instead of the matrix operation without the dot, ^
More than likely your altitude changes are simply not large enough for the power law to "kick in" numerically to see the nonlinearity obviously.
You could, of course, also write the analytic form for the derivative instead of using the differences and be more accurate and lest dependent upon "close enough" to estimate between observed values.
2 comentarios
dpb
el 18 de Nov. de 2019
Just write the analytic form for the derivative and code it.
BTW, the actual derivative needs to be diff(p)/da where da is the difference between the altitude points to normalize magnitude to the actual difference. gradient() also is there that does some internal weighting to midpoint of interval rather than the straight point difference that leaves the estimate one element shorter than the original in length.
Más respuestas (0)
Ver también
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!