Using polyfit and polyval functions with data
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
jacob Mitch
el 17 de Nov. de 2019
Comentada: jacob Mitch
el 17 de Nov. de 2019
I've been using the polyfit and polyval functions recently and I would like to approximate data between 2 vectors but I'm wondering if Ive made a mistake somewhere.
If
a=[1;2;3;4;5;nan;6;nan;nan;10];%prices with data missing
b=[1;2;3;4;5;6;6;7;8;10]; %original prices
days=[1;2;3;4;5;6;7;8;9;10]%number of days
NotMissing=~isnan(a(:,1));
p=a(NotMissing,1); %prices with data not missing
days=a(NotMissing,1);
pf=polyfit(days,p,1);
pv=polyval(pf,days); %polyval approximation of length 7 compared to b which has length 10
%I've want to calculate the mean square error between the approximate prices pv and the original prices using
%E = sqrt( sum( (b-pv).^2) / numel(b) );
Have I made a mistake using the polyval function, in this case I cannot calcuate E because the vectors are different lengths so I'm wondering if Im using the polyfit and polyval functions incorrectly because my length is being reduced by the number of nan values. Or am I 'calculating the error ' between the 2 vectors incorrectly
0 comentarios
Respuesta aceptada
Matt J
el 17 de Nov. de 2019
Editada: Matt J
el 17 de Nov. de 2019
To do what you were after in your post, you need to fit with the NotMissing data, but then apply the fit at all days,
a=[1;2;3;4;5;nan;6;nan;nan;10];%prices with data missing
b=[1;2;3;4;5;6;6;7;8;10]; %original prices
days=[1;2;3;4;5;6;7;8;9;10];%number of days
NotMissing=~isnan(a);
pf=polyfit(days(NotMissing),a(NotMissing),1);
pv=polyval(pf,days)
Más respuestas (1)
Matt J
el 17 de Nov. de 2019
Editada: Matt J
el 17 de Nov. de 2019
I wonder if what you are really trying to do is a fillmissing operation, instead of a linear fit to the data,
a=[1;2;3;4;5;nan;6;nan;nan;10];%prices with data missing
days=[1;2;3;4;5;6;7;8;9;10]%number of days
pv=fillmissing(a,'linear','SamplePoints',days)
0 comentarios
Ver también
Categorías
Más información sobre Descriptive Statistics en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!