Fourier transformation of a function solved by ODEs?
10 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Hi,
I was trying to fourier transform a function solved by ode15s using the code below:
function main2()
% need function since in a script, one cannot define function vdp1
[t,X]=ode15s(@rate,[0:0.01:10],[1.86;3.2;0.4]);
N = size(X(:,3));
T = 0.01;
P = abs(fft(X(:,3)))./(N/2);
P = P(2:N/2-1).^2;
F = [2:N/2-1]'/T;
loglog(F,P)
end
function dXdt=rate(t,X)
if t>0 && t<0.0225
c=0.1.*t;
elseif t>0.0225 && t<0.045
c=-0.1.*t+0.0045;
else
c=0;
end
F = 10.*(1-0.5.*X(1)+log((1+c./0.02)./(1+c./0.5)));
A = 1./(1+exp(F));
dmdt= 0.1.*(1-A)-0.2.*A;
dYdt= 0.182*17.9.*A.*(9.7-X(2))-2.2.*X(2);
dPdt=(0.75+0.1.*(X(2)-3.2)).*(1-X(3))-(1.13-10.*(X(2)-3.2)).*X(3);
dXdt=[dmdt;dYdt;dPdt];
end
Here the second function is not important as I run and plotted the ode solved function and this worked successfully.
Could anyone please helped to whether the fourier transform part below the ode solver in the main2 function is correct (shown above and pasted below)?
N = size(X(:,3));
T = 0.01;
P = abs(fft(X(:,3)))./(N/2);
P = P(2:N/2-1).^2;
F = [2:N/2-1]'/T;
loglog(F,P)
What I am doing here is to fourier transform the third function calculated in the [t , X] matrix and plot a log-log graph.
I also omitted the first wave number, which just corresponds to the sum of all the time-course data.
I am not sure if the T value I used here, equal to the time step for ode solver is correct?
I got this graph below but it does not look right
I would be really grateful if anyone could help me.
Thanks in advance
0 comentarios
Respuestas (1)
Ridwan Alam
el 26 de Nov. de 2019
Editada: Ridwan Alam
el 26 de Nov. de 2019
Not sure why you squared the fft, but the frequency range needs to be as follows:
N = length(X(:,3));
T = 0.01;
Fs = 1/T;
P1 = abs(fft(X(:,3)))/N;
P = P1(1:N/2+1);
P(2:end-1) = 2*P(2:end-1);
F = Fs*(0:N/2)/N;
loglog(F,P)
Hope this helps!
3 comentarios
Ridwan Alam
el 28 de Nov. de 2019
Editada: Ridwan Alam
el 28 de Nov. de 2019
The reason I multiply the P(2:end-1) by 2: FFT generates a two sided (symmetric around f=0) spectrum (here P1) including negative frequencies. P is the one-sided part, where P(1) refers to f=0. Since P is halved in spectrum, the components for f>0 needs to be doubled to reflect the symmetric components in the negative spectrum.
The power spectrum part was not in your question, so I got confused.
I am also not sure what you mean by wave number in an FFT. Please explain and I will try to help.
Ver también
Categorías
Más información sobre Ordinary Differential Equations en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!