Neural Networks - Feedforwardnet Configuration
5 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
I'm trying to use growing batch to train my datasets with a simple feedforwardnet to fit the data. I have a growing datasets which means one sample is generated after each learning period, as shown below.
At time k,
,
, before training, I normalized input and target to [0,1] ->
At time k+1, generate
,
->
If I use the default feedforwardnet settings
net = feedforwardnet(32);
net.divideParam.trainRatio = 0.7; % training set [%]
net.divideParam.valRatio = 0.15; % validation set [%]
net.divideParam.testRatio = 0.15; % test set [%]
net.trainParam.epochs = 300;
net = init(net);
I can get some outputs from
.
But since my inputs and outputs are normalized to [0,1], when I try to change the activation function as
net.layers{1}.transferFcn = 'logsig';
net.layers{2}.transferFcn = 'poslin';
Could anyone let me know how to configure the net correctly if I change transferFcn.
Besides, if I normalize the inputs and outputs before fit them to the net, do I need to disable processFcn as well?
net.inputs{1}.processFcns = {};
net.outputs{1}.processFcns= {};
Many thanks!
0 comentarios
Respuestas (0)
Ver también
Categorías
Más información sobre Define Shallow Neural Network Architectures en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!