Avoid training certain neurons
3 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Hamid Moazed
el 22 de Dic. de 2019
Comentada: Hamid Moazed
el 23 de Dic. de 2019
Using the Deep Learning Toolbox, I wish to construct a simple feed-forward network for a simulation, however assume I have already trained one of the hidden neurons (out of several) with the correct weights and biases and I don't want them to change during training. How can I make this single specific neuron be "constant" and not get retrained with new wights and biases while the rest of the network is being trained?
0 comentarios
Respuesta aceptada
Hiro Yoshino
el 23 de Dic. de 2019
There is an option to keep specific layers' learning rates low so you can fix them as they are.
for example
fullyConnectedLayer(<outputsize>, 'WeightLearnRateFactor', 0, 'BiasLearnRateFactor', 0)
This way, you would multiply zero to the global learning rate, which is set via trainingOptions function, and thus the learning rates of the weights in the fully-connected-layer are set as zero.
Más respuestas (0)
Ver también
Categorías
Más información sobre Sequence and Numeric Feature Data Workflows en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!