taylor series expansion with initial condition
    9 visualizaciones (últimos 30 días)
  
       Mostrar comentarios más antiguos
    
    MINATI
      
 el 4 de En. de 2020
  
    
    
    
    
    Comentada: MINATI
      
 el 5 de En. de 2020
            syms x f(x) p 
f1=taylor(f(x),x,'order',3)
(D(D(f))(0)=p; D(f)(0)=1; f(0)=0;
%%%   I want to put  initial conditios   (D(D(f))(0)=p; D(f)(0)=1; f(0)=0;    in  f1  to 
find  f1=x+p*x^2/2      in  symbolic form.   Guide me please
0 comentarios
Respuesta aceptada
  John D'Errico
      
      
 el 5 de En. de 2020
        
      Editada: John D'Errico
      
      
 el 5 de En. de 2020
  
      Why not try it! ??? Make an effort. For example, this seems the obvious thing to try. So what does this do?
syms x f(x) p 
f1=taylor(f(x),x,'order',3)
f1 =
(D(D(f))(0)*x^2)/2 + D(f)(0)*x + f(0)
subs(f1,f(0),0)
ans =
(D(D(f))(0)*x^2)/2 + D(f)(0)*x
Can you finish the next two steps on your own?
5 comentarios
  John D'Errico
      
      
 el 5 de En. de 2020
				Yes, but you cannot do what you want.
syms x f(x) p g(x) a q h(x) r
f1 = taylor([f(x) g(x) h(x)],x,'order',[3 3 2]);
Error using sym/taylor (line 99)
The value of 'Order' is invalid. It must satisfy the function: isPositiveInteger. 
The taylor function appears not to be vectorized in the sense that you can expand each term ot the vector of functions to a different order.
So this next is valid:
f1 = taylor([f(x) g(x) h(x)],x,'order',3);
And then you should be able to proceed further.
Más respuestas (0)
Ver también
Categorías
				Más información sobre Calculus en Help Center y File Exchange.
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!

