how to solve this equation of motion?
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
Hi
I appreciate if anyone can help me to underestand if I can solve this EOM like a normal 2DOF system which I use ODE45 for it.
Here is the paper:
which:
function yp = func_forced_5DOF(t,y,M,ws,m1,m2,r,kx,ky,ksi,fx,fy,fsi,fd1,fd2,J,j1,j2,L1,L2)
a0 = (1 - ((ws^2)*Ts*Tr*Sig)^2) + ((ws^2)*((Tr + Ts)^2));
a1 = (2*(1 - ((ws^2)*Ts*Tr*Sig))*ws*Ts*Tr*Sig) - (2*(ws*((Tr + Ts)*Tr)));
a2 = Tr^2 + ((ws^2) * (Ts^2) * (Tr^2) *(Sig^2));
Te1 = (K*(ws-y(9))) / ((a2*(y(9)^2))+(a1*y(9))+a0);
Te2 = (K*(ws-y(10))) / ((a2*(y(10)^2))+(a1*y(10))+a0);
yp(1,:) = y(6,:);
yp(2,:) = y(7,:);
yp(3,:) = y(8,:);
yp(4,:) = y(9,:);
yp(5,:) = y(10,:);
yp(6,:) = ((m1*r*( ((y(9,:)^2) * cos(y(4,:))) + (yp(9,:)*sin(y(4,:))) )) - ( m2*r( ((y(10,:)^2) * cos(y(5,:))) + (yp(10,:)*sin(y(5,:))) )) - (fx*y(6,:)) - (kx*y(1,:))) / M;
yp(7,:) = ((m1*r*( ((y(9,:)^2) * sin(y(4,:))) - (yp(9,:)*cos(y(4,:))) )) + ( m2*r( ((y(10,:)^2) * sin(y(5,:))) - (yp(10,:)*cos(y(5,:))) )) - (fy*y(7,:)) - (ky*y(2,:))) / M;
yp(8,:) = ((-1*m1*r*L1*( ((y(9,:)^2) * sin(y(4,:))) - (yp(9,:)*cos(y(4,:))) )) + ( m2*r*L2*( ((y(10,:)^2) * sin(y(5,:))) - (yp(10,:)*cos(y(5,:))) )) - (fsi*y(8,:)) - (ksi*y(3,:))) / J;
yp(9,:) = (Te1 - (m1*r*( ( yp(7,:) * cos(y(4,:))) - (yp(6,:)*sin(y(4,:)) ))) - ( L1*( (yp(8,:) * cos(y(4,:))))) - (fd1*y(9,:)) ) / j1;
yp(10,:) = (Te2 - (m2*r*( ( yp(7,:) * cos(y(5,:))) - (yp(6,:)*sin(y(5,:)) ))) + ( L2*( (yp(8,:) * cos(y(5,:))))) - (fd2*y(10,:)) ) / j2;
0 comentarios
Respuestas (1)
darova
el 21 de En. de 2020
Here is an idea:
function main
% define constants
m1 = ...
m2 = ...
function dy = myode(t,u)
x = u(1);
dx = u(2);
%% ...
phi2 = u(9);
dphi2 = u(10);
% coefficient matrix
% d2x d2y d2psi d2phi1 d2phi2
A = [M 0 0 -m1*r*sin(phi1) m2*r*sin(phi2)
0 M 0 m1*r*cos(phi1) m2*r*cos(phi2)
0 0 J m1*r*L1*cos(phi1) ...
% ...
];
% constant matrix
B = [-fx*dx - kx*x + m1*r*dphi1^2*cos(phi1) - m2*r*dphi2^2*cos(phi2)
%..
];
dy(1:5,1) = u(2:2:10); % velocities
dy(6:10,1) = A\B; % accelerations
end
end
6 comentarios
darova
el 23 de En. de 2020
Those values are something like M or kx. You can't guess them
Imagine you have something like that:
You want to see what will hapen if you loose green ball.
What will be the initial conditions (Velocity and angle)? Depends on what you want
Ver también
Productos
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!