how to solve this equation of motion?

1 visualización (últimos 30 días)
AJ
AJ el 21 de En. de 2020
Comentada: darova el 23 de En. de 2020
Hi
I appreciate if anyone can help me to underestand if I can solve this EOM like a normal 2DOF system which I use ODE45 for it.
Here is the paper:
3.JPG
1.JPG
which:
2.JPG
function yp = func_forced_5DOF(t,y,M,ws,m1,m2,r,kx,ky,ksi,fx,fy,fsi,fd1,fd2,J,j1,j2,L1,L2)
a0 = (1 - ((ws^2)*Ts*Tr*Sig)^2) + ((ws^2)*((Tr + Ts)^2));
a1 = (2*(1 - ((ws^2)*Ts*Tr*Sig))*ws*Ts*Tr*Sig) - (2*(ws*((Tr + Ts)*Tr)));
a2 = Tr^2 + ((ws^2) * (Ts^2) * (Tr^2) *(Sig^2));
Te1 = (K*(ws-y(9))) / ((a2*(y(9)^2))+(a1*y(9))+a0);
Te2 = (K*(ws-y(10))) / ((a2*(y(10)^2))+(a1*y(10))+a0);
yp(1,:) = y(6,:);
yp(2,:) = y(7,:);
yp(3,:) = y(8,:);
yp(4,:) = y(9,:);
yp(5,:) = y(10,:);
yp(6,:) = ((m1*r*( ((y(9,:)^2) * cos(y(4,:))) + (yp(9,:)*sin(y(4,:))) )) - ( m2*r( ((y(10,:)^2) * cos(y(5,:))) + (yp(10,:)*sin(y(5,:))) )) - (fx*y(6,:)) - (kx*y(1,:))) / M;
yp(7,:) = ((m1*r*( ((y(9,:)^2) * sin(y(4,:))) - (yp(9,:)*cos(y(4,:))) )) + ( m2*r( ((y(10,:)^2) * sin(y(5,:))) - (yp(10,:)*cos(y(5,:))) )) - (fy*y(7,:)) - (ky*y(2,:))) / M;
yp(8,:) = ((-1*m1*r*L1*( ((y(9,:)^2) * sin(y(4,:))) - (yp(9,:)*cos(y(4,:))) )) + ( m2*r*L2*( ((y(10,:)^2) * sin(y(5,:))) - (yp(10,:)*cos(y(5,:))) )) - (fsi*y(8,:)) - (ksi*y(3,:))) / J;
yp(9,:) = (Te1 - (m1*r*( ( yp(7,:) * cos(y(4,:))) - (yp(6,:)*sin(y(4,:)) ))) - ( L1*( (yp(8,:) * cos(y(4,:))))) - (fd1*y(9,:)) ) / j1;
yp(10,:) = (Te2 - (m2*r*( ( yp(7,:) * cos(y(5,:))) - (yp(6,:)*sin(y(5,:)) ))) + ( L2*( (yp(8,:) * cos(y(5,:))))) - (fd2*y(10,:)) ) / j2;

Respuestas (1)

darova
darova el 21 de En. de 2020
Here is an idea:
function main
% define constants
m1 = ...
m2 = ...
function dy = myode(t,u)
x = u(1);
dx = u(2);
%% ...
phi2 = u(9);
dphi2 = u(10);
% coefficient matrix
% d2x d2y d2psi d2phi1 d2phi2
A = [M 0 0 -m1*r*sin(phi1) m2*r*sin(phi2)
0 M 0 m1*r*cos(phi1) m2*r*cos(phi2)
0 0 J m1*r*L1*cos(phi1) ...
% ...
];
% constant matrix
B = [-fx*dx - kx*x + m1*r*dphi1^2*cos(phi1) - m2*r*dphi2^2*cos(phi2)
%..
];
dy(1:5,1) = u(2:2:10); % velocities
dy(6:10,1) = A\B; % accelerations
end
end
  6 comentarios
AJ
AJ el 23 de En. de 2020
Thanks a lot. I really appreciate.
Is there any way to guess that what range the initial conditions are?
darova
darova el 23 de En. de 2020
Those values are something like M or kx. You can't guess them
Imagine you have something like that:
123.png
You want to see what will hapen if you loose green ball.
What will be the initial conditions (Velocity and angle)? Depends on what you want

Iniciar sesión para comentar.

Categorías

Más información sobre Mathematics en Help Center y File Exchange.

Productos

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by