Numerical Integration in matlab

3 visualizaciones (últimos 30 días)
AVM
AVM el 22 de En. de 2020
Comentada: AVM el 27 de En. de 2020
what is reliable way to perform a integartion numerically in matlab? I would like to get numerical result after integration of a large function .
Is that Trapezoidal rule or Simpson's rule is reliable to do that? Pl somebody tell me what is the best way for that.
Otherwise, when I use 'int()' command directly, Matlab takes very very huge time almost 5-6 hours.
  4 comentarios
AVM
AVM el 22 de En. de 2020
@James: Thanks . Pl see this.
clc
close all
syms 'theta' 'phi' g
g=1;
thet=4;
h=[ cos(theta) 0 sin(theta)*exp(-1i*phi) 0
0 cos(theta) g sin(theta)*exp(-1i*phi)
sin(theta)*exp(1i*phi) g -cos(theta) 0
0 sin(theta)*exp(1i*phi) 0 -cos(theta) ];
a1=(exp(-phi*2i)*(cos(theta)^2 + sin(theta)^2 + g^2/2 - (g*(4*sin(theta)^2 + g^2)^(1/2))/2)^(3/2))/(g*sin(theta)^2) - (exp(-phi*2i)*cos(theta)*(g^2 + cos(theta)^2 + sin(theta)^2))/(g*sin(theta)^2) + (exp(-phi*2i)*cos(theta)*(cos(theta)^2 + sin(theta)^2 + g^2/2 - (g*(4*sin(theta)^2 + g^2)^(1/2))/2))/(g*sin(theta)^2) - (exp(-phi*2i)*(g^2 + cos(theta)^2 + sin(theta)^2)*(cos(theta)^2 + sin(theta)^2 + g^2/2 - (g*(4*sin(theta)^2 + g^2)^(1/2))/2)^(1/2))/(g*sin(theta)^2);
b1=(exp(-phi*1i)*(cos(theta)^2 + sin(theta)^2 + g^2/2 - (g*(4*sin(theta)^2 + g^2)^(1/2))/2)^(1/2))/sin(theta) + (exp(-phi*1i)*cos(theta))/sin(theta);
c1=-(exp(-phi*1i)*(cos(theta)^2 + sin(theta)^2))/(g*sin(theta)) + (exp(-phi*1i)*(cos(theta)^2 + sin(theta)^2 + g^2/2 - (g*(4*sin(theta)^2 + g^2)^(1/2))/2))/(g*sin(theta));
d1=1;
m=sqrt(a1*conj(a1)+b1*conj(b1)+c1*conj(c1)+d1*conj(d1));
u=1/m*[ a1
b1
c1
d1 ];
v=diff(u,phi);
r=dot(u,v);
f(theta,g)=1i/pi*int(r,phi,0,2*pi); %% This integration taking so much time
f = simplify(f, 'Steps',500);
ffcn = matlabFunction(f);
theta = linspace(0.001,4, 30);
g = linspace(0.001,10, 30);
[Th,G] = meshgrid(theta, g);
F=ffcn(Th,G);
%max(imag(F(:)))
%min(imag(F(:)))
figure
mesh(Th, G, F)
colormap(cool)
grid on
xlabel('\bf\theta','FontSize',14)
ylabel('\bf\alpha','FontSize',14)
zlabel('\bf\itf','FontSize',14)
%% This entire process takes long time, I quit that in between.
Walter Roberson
Walter Roberson el 22 de En. de 2020
Editada: Walter Roberson el 22 de En. de 2020
simplify( r) before doing the integration; it compacts down quite a bit. Also,
assume(phi>=0)
assume(theta>=0)
before doing the simplify()

Iniciar sesión para comentar.

Respuesta aceptada

Walter Roberson
Walter Roberson el 22 de En. de 2020
There is no reliable numeric integration method in any programming language. For any given numeric integration method, it is possible to construct a function which the numeric integration method will return an arbitrarily wrong solution.
Trapazoidal Rule and Simpson's Rule are not reliable at all.
You could consider using integral(); provide AbsTol and RelTol parameters, and provide WayPoints whenever meaningful.
You could consider using vpaintegral() with similar parameters.
  23 comentarios
Walter Roberson
Walter Roberson el 27 de En. de 2020
Editada: Walter Roberson el 27 de En. de 2020
There is no faster version of symbolic simplification, except possibly some fairly small gains in performance in newer versions.
Symbolic work is done using compiled libraries that are not written in MATLAB itself, so improvements in the MATLAB Execution Engine that have been made do not improve the symbolic engine.
If you are doing numeric integration on a system that has only one free variable, then use vpaintegral() instead of int() -- but integral() will likely be faster than vpaintegral()
AVM
AVM el 27 de En. de 2020
Thanks for your information.

Iniciar sesión para comentar.

Más respuestas (2)

AVM
AVM el 22 de En. de 2020
@Walter: Thanks. I am trying that
  1 comentario
AVM
AVM el 22 de En. de 2020
@Strider: Thanks for your reply.

Iniciar sesión para comentar.


AVM
AVM el 26 de En. de 2020
@walter: How do I can normalize an eigen vector in Matlab? PL tell me what is the corresponding command for the normalization?
  4 comentarios
AVM
AVM el 27 de En. de 2020
Thanks a lot again.
AVM
AVM el 27 de En. de 2020
@walter: With this normalized command when I try to run the following progamming, it is taking so much time as near to 1 hour and the pc start to hang frequently. I had forcefully quit that. You, pl have a look on my code and suugest me what to do. I am using matlab R2018a version.
clc;clear;
syms theta phi g
%% h is 4*4 matrix
h=[ cos(theta) 0 sin(theta)*exp(-1i*phi) g
0 cos(theta) 0 sin(theta)*exp(-1i*phi)
sin(theta)*exp(1i*phi) 0 -cos(theta) 0
g sin(theta)*exp(1i*phi) 0 -cos(theta) ];
%% a1,b1,c1 and d1 are the components of first eigenvector of h; these are pasted from command plate
%a1=(cos(theta)^2 + sin(theta)^2 + g^2/2 - (g*(4*sin(theta)^2 + g^2)^(1/2))/2)^(3/2)/(g*sin(theta)^2) - (cos(theta)^3 + cos(theta)*sin(theta)^2 + g^2*cos(theta))/(g*sin(theta)^2) + (cos(theta)*(cos(theta)^2 + sin(theta)^2 + g^2/2 - (g*(4*sin(theta)^2 + g^2)^(1/2))/2))/(g*sin(theta)^2) - ((g^2 + cos(theta)^2 + sin(theta)^2)*(cos(theta)^2 + sin(theta)^2 + g^2/2 - (g*(4*sin(theta)^2 + g^2)^(1/2))/2)^(1/2))/(g*sin(theta)^2);
%b1=-(exp(-phi*1i)*(cos(theta)^2 + sin(theta)^2 + g^2/2 - (g*(4*sin(theta)^2 + g^2)^(1/2))/2)^(3/2))/sin(theta)^3 + (exp(-phi*1i)*(cos(theta)^2 + 2*sin(theta)^2 + g^2)*(cos(theta)^2 + sin(theta)^2 + g^2/2 - (g*(4*sin(theta)^2 + g^2)^(1/2))/2)^(1/2))/sin(theta)^3 - (exp(-phi*1i)*cos(theta)*(cos(theta)^2 + sin(theta)^2 + g^2/2 - (g*(4*sin(theta)^2 + g^2)^(1/2))/2))/sin(theta)^3 + (exp(-phi*1i)*cos(theta)*(cos(theta)^2 + 2*sin(theta)^2 + g^2))/sin(theta)^3;
%c1= -(g^2*exp(phi*1i) + exp(phi*1i)*cos(theta)^2 + exp(phi*1i)*sin(theta)^2)/(g*sin(theta)) + (exp(phi*1i)*(cos(theta)^2 + sin(theta)^2 + g^2/2 - (g*(4*sin(theta)^2 + g^2)^(1/2))/2))/(g*sin(theta));
%d1=1;
%m=sqrt(a1*conj(a1)+b1*conj(b1)+c1*conj(c1)+d1*conj(d1));
%% normalized first eigen vector of h
%u=1/m*[a1;b1;c1;d1];
%% differently
[V,L]=eig(h);
u=V(:,1)./sqrt(sum(V(:,1).^2)); %% this call aslo for normalised eigenvector of h
x=diff(u,phi);
r=dot(u,x);
assume(theta>=0);
assume(phi>=0);
r=simplify(r,'Steps',100);
f(theta,g)=1i/pi*int(r,phi,0,2*pi);
f=simplify(f,'Steps',100);
ffcn = matlabFunction(f);
theta = linspace(0.001,4, 30);
g = linspace(.001,2, 30);
[Th,G] = ndgrid(theta, g);
%F=abs(ffcn(Th,Al));
F=ffcn(Th,G);
%max(imag(F(:)))
%min(imag(F(:)))
figure
meshc(Th,G, F)
colormap(cool)
grid on
xlabel('\bf\theta','FontSize',14)
ylabel('\bf\alpha','FontSize',14)
zlabel('\bf\itf','FontSize',14)
But when I normalize the state just by activiting a1,b1, c1 and d1, then the graph is appearing withhin few min..But I wnated to avoid those large expression of a1,b1, c1 and d1. Pl suggest me what to do.
Thanks.

Iniciar sesión para comentar.

Categorías

Más información sobre Characters and Strings en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by