Feature selection for svm classifier
9 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
hi
i have a training data , size 380 x 88 ( 380 is the number of samples and 88 the number of features)
and its class matrix is a 380 x 1 (class -1 and class +1)
how i can selecting its best features for svm classifier ?
thank you ♥
0 comentarios
Respuestas (1)
Ayush Aniket
el 29 de Ag. de 2024
For SVM, Sequential Feature Selection is a suitable feature selection method because it recursively adds the most important features based on the weights assigned by the Machine Learning model (SVM). These weights inherently capture the interactions between features effectively, thus using them for feature selection helps identify the most significant features.
You can use the sequentialfs function in MATLAB to implement it as shown below:
% Sample data
X = randn(380, 88); % 380 samples, 88 features
y = randi([0, 1], 380, 1) * 2 - 1; % Class labels -1 and +1
cv = cvpartition(y,"KFold",10);
myFunHandle = @(XTrain,yTrain,XTest,yTest) ...
loss(fitcsvm(XTrain,yTrain),XTest,yTest)*size(XTest,1);
% Perform sequential feature selection
opts = statset('display', 'iter'); % Display iteration information
[selectedFeatures, history] = sequentialfs(myFunHandle, X, y, 'CV',cv,'options', opts);
% Display selected features
disp('Selected Features:');
disp(find(selectedFeatures));
The function uses a custom criterion function (SVM model here) to select the features.Refer to the following documentation to read about the sequentialfs function:
After the features are selected, the final training set can be constituted using them and train a SVM model.
0 comentarios
Ver también
Categorías
Más información sobre Statistics and Machine Learning Toolbox en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!