The Number of coefficents of Time delay neural network
    2 visualizaciones (últimos 30 días)
  
       Mostrar comentarios más antiguos
    
    Abdelwahab Afifi
 el 27 de En. de 2020
  
    
    
    
    
    Comentada: Abdelwahab Afifi
 el 4 de Feb. de 2020
            for the following Time delay neural network
clc; clear all; close all;
[X,T] = simpleseries_dataset;
net1 = timedelaynet(1:2,20);
[Xs,Xi,Ai,Ts] = preparets(net1,X,T);
net1 = train(net1,Xs,Ts,Xi);
y1 = net1(Xs,Xi);
view(net1)
weights1 = getwb(net1)
According to my understanding; the input to this network supposed to be the current input and the previous inputs X(n), X(n-1), X(n-2)  
Hence the number of weights supposed to be (3x20 +20x1) and the bias (20+1) , hence the vector od weights and bias suppoed to a vector with length = 101 
But, when I use the   getwb(net1)  I get  vector with length = 81  ??!!
why he neglect the weights of one sample
0 comentarios
Respuesta aceptada
  Mahesh Taparia
    
 el 4 de Feb. de 2020
        Hi 
It does not neglect any weight. Since the number of input delays is 2, the number of weights will be (2X20+20X1) and the bias (20+1). The vector length will be 81. If the input delay is 3, then it will be 101. For more information you can refer to the documentation page of timedelaynet here. 
Más respuestas (0)
Ver también
Categorías
				Más información sobre Deep Learning Toolbox en Help Center y File Exchange.
			
	Productos
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!