How to reduce computation time
13 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Yassine Hmamouche
el 23 de Mayo de 2020
Comentada: Walter Roberson
el 25 de Mayo de 2020
Hi,
The function "funct" takes up almost 0.06 seconds and it is the first responsible for a slow execution of an integral (more than 3 hours) when it is used in it with regards to y.
Any help please to reduce the computation time of the following function
function [out] = funct(mu,lmax,wmax,hmax,lambdab,hu,hb,y,x)
nx=length(x);
out=zeros(1,nx);
A=(mu./pi).*(wmax+lmax);
B=(mu.*wmax.*lmax)./4;
C1=(hb-(2.*hmax))./(2*hmax);
C2=(hu+hb-(2.*hmax))./(2*hmax);
for i=1:nx
S1=@(u,theta) u.*(1-exp(C1.*((A.*sqrt(u.^2+x(i).^2-(2.*x(i).*u.*cos(theta))))+B)));
S2=@(theta) (1-exp(C1.*((A.*sqrt(y.^2+x(i).^2-(2.*x(i).*y.*cos(theta))))+B)));
out(i)=lambdab.*y.*integral(S2,0,2*pi,'ArrayValued',true).*exp(-lambdab.*quad2d(S1,0,y,0,2*pi))./(1-exp(-lambdab.*quad2d(S1,0,1000,0,2*pi)));
end
end
4 comentarios
Respuesta aceptada
Walter Roberson
el 25 de Mayo de 2020
By going back and replacing that 1000 limit with infinity, and adding the assumption that all values are non-negative, and that hb < 2*hmax, Maple is able to combine terms to remove one integral. The symbolic form is
-exp(lambdab * int( int( u * (exp(1/2 * (1/4 * lmax * wmax * pi + (lmax+wmax) * ...
(u^2 - 2 * cos(theta) * u * x + x^2)^(1/2)) * mu * (hb-2*hmax) / pi / hmax)-1), u, 0, y), ...
theta, 0, 2*pi)) * lambdab * y * int(-1 + exp(1/8 * ((4 * lmax + 4 * wmax) * ...
(x^2 - 2 * cos(theta) * x * y + y^2)^(1/2) + lmax * wmax * pi) * (hb-2*hmax) * mu / pi / hmax), ...
theta, 0, 2*pi)
This should be more efficient
9 comentarios
Walter Roberson
el 25 de Mayo de 2020
Also, it helps to know any constraints that might apply. Even just knowing that a particular variable is real-valued might be enough to permit a calculation to simplify.
Más respuestas (1)
per isakson
el 24 de Mayo de 2020
Editada: per isakson
el 25 de Mayo de 2020
On R2018b and a new vanilla PC I found a significant decrease in computation time by replacing quad2d() by integral2() (with the same signature, i.e. defaults are used). With your input data this replacement didn't affect the result, out. (Caveat, I do this because I'm curious, not because I know much about the topic.) There are two posts on Double Integration in MATLAB ( and here ) at Loren on the Art of MATLAB. I don't find backing for the difference in speed that I've seen, which makes me a bit nervous. What's the catch? There ought to exist a discussion on how to chose between the two functions, but I fail to find it.
Have you tried to simplify the expressions with the help of the Symbolic Toolbox? See https://se.mathworks.com/matlabcentral/answers/33399-problem-with-double-integral-dblquad-and-quad2d#answer_42126 it's a bit old but shows the idea. Maybe that toolbox sees something that I don't see.
In response to comments
The difference in speed between integral2(), introduced in R2012a, and quad2d(), introduced in R2009a, that I see is irking.
I've compared your function, funct(), to funct_int2(), in which I replaced quad2d() by integral2(). (And split the long statement into three to make the code and the result of profile() easier to read.)
>> cssm % first call to cssm after starting Matlab
Elapsed time is 0.364935 seconds.
Elapsed time is 0.140186 seconds.
0
>> cssm
Elapsed time is 0.104307 seconds.
Elapsed time is 0.021930 seconds.
0
>> cssm
Elapsed time is 0.088423 seconds.
Elapsed time is 0.016356 seconds.
0
...
...
>> cssm
Elapsed time is 0.091209 seconds.
Elapsed time is 0.017180 seconds.
0
where cssm.m is a script containing
%%
mu=1; lmax=4; wmax=6; hmax=30; lambdab=1; hu=40; hb=10; y=4; x=2;
%%
tic
for jj = 1 : 10
out1 = funct(mu,lmax,wmax,hmax,lambdab,hu,hb,y,x);
end
toc
%%
tic
for jj = 1 : 10
out2 = funct_int2(mu,lmax,wmax,hmax,lambdab,hu,hb,y,x);
end
toc
disp( out2-out1 )
and
function [out] = funct_int2(mu,lmax,wmax,hmax,lambdab,hu,hb,y,x)
nx=length(x);
out=zeros(1,nx);
A=(mu./pi).*(wmax+lmax);
B=(mu.*wmax.*lmax)./4;
C1=(hb-(2.*hmax))./(2*hmax);
C2=(hu+hb-(2.*hmax))./(2*hmax); %#ok<NASGU>
for ii=1:nx
S1=@(u,theta) u.*(1-exp(C1.*((A.*sqrt(u.^2+x(ii).^2-(2.*x(ii).*u.*cos(theta))))+B)));
S2=@(theta) (1-exp(C1.*((A.*sqrt(y.^2+x(ii).^2-(2.*x(ii).*y.*cos(theta))))+B)));
f1 = lambdab.*y.*integral(S2,0,2*pi,'ArrayValued',true);
f2 = exp(-lambdab.*integral2(S1,0,y,0,2*pi));
f3 = (1-exp(-lambdab.*integral2(S1,0,1000,0,2*pi)));
out(ii) = f1.*f2./f3;
end
end
Comments
- Fine print; don't blame me for mistakes.
- In this comparison both integral2() and quad2d() use the "tiled method"
- The fact that the two return exactly the same result makes me believe that deep inside the same calculation is made.
7 comentarios
per isakson
el 25 de Mayo de 2020
@Yassine Hmamouche, Then you have integral2() and should be able to rum "my" funct_int2. See integral2, Numerically evaluate double integral. I'm curious to hear whether you can reproduce my result.
Ver también
Categorías
Más información sobre Loops and Conditional Statements en Help Center y File Exchange.
Productos
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
