Split Jacobian result into Matrix factors
2 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Hello,
I'm using the symbolic toolbos to calculate the following Jacobian:
jacobian(A4,phi_)
where
A4 = - TLB*R*TLB2*w
with

The result of jacobian(A4,phi_) calculated by Matlab is
[wz*(r2 + psi*r5 - r8*theta) - wy*(r3 + psi*r6 - r9*theta), wy*(r8 + phi*r9 - psi*r7) - wz*(r1 - r9 + phi*r8 + psi*r4 - 2*r7*theta) + wx*(r3 + r7 + psi*r6 + psi*r8 - 2*r9*theta), - wz*(r6 - phi*r5 + r4*theta) - wy*(r5 - r1 + phi*r6 - 2*psi*r4 + r7*theta) - wx*(r2 + r4 + 2*psi*r5 - r6*theta - r8*theta)]
[ - wx*(r7 + psi*r8 - r9*theta) - wz*(r9 - r5 - 2*phi*r8 + psi*r2 + r7*theta) - wy*(r6 + r8 + 2*phi*r9 - psi*r3 - psi*r7),wx*(r6 + phi*r9 - psi*r3) - wz*(r4 + phi*r7 - psi*r1), wz*(r3 - phi*r2 + r1*theta) - wx*(r5 - r1 + phi*r8 - 2*psi*r2 + r3*theta) + wy*(r2 + r4 + phi*r3 + phi*r7 - 2*psi*r1)]
[ wx*(r4 + psi*r5 - r6*theta) - wy*(r9 - r5 - 2*phi*r6 + psi*r4 + r3*theta) + wz*(r6 + r8 - 2*phi*r5 + r2*theta + r4*theta), - wy*(r2 + phi*r3 - psi*r1) - wx*(r1 - r9 + phi*r6 + psi*r2 - 2*r3*theta) - wz*(r3 + r7 - phi*r2 - phi*r4 + 2*r1*theta), wy*(r7 - phi*r4 + r1*theta) - wx*(r8 - phi*r5 + r2*theta)]
which as you can see isn't very nice looking.
My question is if I can somehow turn this result into a product of my original matrices (if even mathematically possible),
for example ans = TLB*TLB2*R^T*inv(TLB*TLB2) or something like that.
Hope someone can help me here, thanks.
3 comentarios
David Goodmanson
el 27 de Mayo de 2020
With fifteen independent variables sprinkled around by matrix multiplication, you can't expect the results to be sleek. And if you do have a better looking alternative expression such as the one you suggest (assuming it were true) then of course the end result has to be exactly the same as the one you have. So a better starting point doesn't help.
Respuestas (0)
Ver también
Categorías
Más información sobre Creating and Concatenating Matrices en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!