Info
La pregunta está cerrada. Vuélvala a abrir para editarla o responderla.
Write a function called minimax that takes M, a matrix input argument and returns mmr, a row vector containing the absolute values of the difference between the maximum and minimum valued elements in each row. As a second output argument called mmm,
4 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Write a function called minimax that takes M, a matrix input argument and returns mmr, a row vector containing the absolute values of the difference between the maximum and minimum valued elements in each row. As a second output argument called mmm, it provides the difference between the maximum and minimum element in the entire matrix. See the code below for an example:
>> A = randi(100,3,4) %EXAMPLE
A =
66 94 75 18
4 68 40 71
85 76 66 4
>> [x, y] = minimax(A)
x =
76 67 81
y =
90
%end example
%calling code: [mmr, mmm] = minimax([1:4;5:8;9:12])
My answer to this:
function [mmr,mmm] = minimax(M)
mmr = abs(max(M.')-min(M.'));
mmm = max(max(M)) - min(min(M));
This is shortest code I could write. What do you guys think of this?
Respuestas (17)
Prasad Reddy
el 30 de Mayo de 2020
function [mmr,mmm] = minimax(M)
a=max(M');
b=min(M');
mmr=a-b;
c=max(a);
d=min(b);
mmm=c-d;
end
% This is what i came up with. Please give a upthumb if it works.
3 comentarios
Alexandar
el 24 de Jun. de 2022
How come you put a single apostrophe for this: M'. I am having trouble understanding that portion since I am new to coding.
Rik
el 24 de Jun. de 2022
The apostrophe is the operator to determine the conjugate. In the case of non-complex numbers that means swapping the rows with columns.
Rushi Auti
el 31 de Jul. de 2020
function [mmr,mmm] = minimax(M)
a = max(M,[],2);
b = min(M,[],2);
c= a-b;
d = c';
mmr = c'
e = max(M,[],'all');
f = min(M,[],'all');
mmm = e-f
12 comentarios
Renz Reven Mariveles
el 11 de Jun. de 2022
Thank youu. omg I have been searching for so longg. I HAVE FINALLY FIND THE ANSWER.
Ahmed Salmi
el 17 de Jul. de 2020
function [mmr,mmm]=minimax(m)
mmr=max(m')-min(m');
mmm=max(m,[],'all')-min(m,[],'all');
end
or
function [mmr,mmm]=minimax(m)
a=max(m');
b=min(m');
mmr=a-b;
c=max(m,[],'all');
d=min(m,[],'all');
mmm=c-d;
end
1 comentario
Stephen23
el 17 de Jul. de 2020
Incorrect output:
>> M = [1;2;3]
M =
1
2
3
>> minimax(M)
ans = 2
Harry Virani
el 12 de Ag. de 2020
function [mmr, mmm] = minimax(input)
matrix = [input];
maxr = max(matrix.');
minr = min(matrix.');
mmr = maxr - minr;
maxm = max(maxr);
minm = min(minr);
mmm = maxm - minm;
end
1 comentario
Stephen23
el 17 de Ag. de 2020
Fails for any matrix with only one column:
>> minimax([1;2;3])
ans = 2
durgesh patel
el 4 de En. de 2021
function [mmr , mmm] = minimax(M)
mmr = max(M') - min(M');
mmm = max(M,[],'all')- min(M,[],'all');
end
1 comentario
Stephen23
el 4 de En. de 2021
Fails for any matrix with only one column:
minimax([1;2;3])
Shamith Raj Shetty
el 4 de En. de 2021
Editada: DGM
el 29 de Mzo. de 2023
function [mmr,mmm] = minimax(M)
N = M';
mmr = max(N)-min(N);
mmm = max(max(N))-min(min(N));
end
1 comentario
Rik
el 4 de En. de 2021
Your function fails for column vectors.
M = [1;2;3];
minimax(M) % ans = [0,0,0]
M=[1:4;5:8;9:12];
minimax(M) % ans = [3,3,3]
Also, what is the point of posting this answer? What does it teach? Why should it not be deleted?
Francisco Moto
el 6 de Feb. de 2021
2 comentarios
Stephen23
el 6 de Feb. de 2021
@Francisco Moto: your function does not do what your assignment requires. In particular:
- Your function accepts one input. It then ignores this input completely.
- You have hard-coded values for one specific matrix. The assignment requests a general solution.
Most of the operations in your function are not used for anything.
Balakrishna Peram
el 8 de Jun. de 2021
Editada: Stephen23
el 8 de Jun. de 2021
on a General sense this should be the answer
function [mmr,mmm] = minimax(M)
mmr=abs(max(M,[],2)-min(M,[],2))
mmm=max(M,[],'all')-min(M,[],'all')
end
1 comentario
Fazal Hussain
el 19 de En. de 2022
Editada: DGM
el 29 de Mzo. de 2023
There is some mistake in second line but now it will give you output okay.
thanks
function [mmr,mmm] = minimax(M)
mmr=[abs(max(M,[],2)-min(M,[],2))]';
mmm=max(M,[],'all')-min(M,[],'all');
end
Chappa Likhith
el 25 de Jun. de 2021
In editor window:
function [mmr,mmm]=minimax(M)
mmr=difference(M') %M' is a tranpose of M. If you want to know why this.. go to COMPUTER PROGRAMMING WITH MATLAB book of author J. MICHAEL FITZPATRICK AND ÁKOS LÉDECZI... go to page 90 tabel 2.7
mmm=difference(M(:));
function a=difference(v)
a=max(v)-min(v);
In comand window:
>>>[mmr, mmm] = minimax([1:4;5:8;9:12])
% you can write any other matrix too
3 comentarios
Chappa Likhith
el 25 de Jun. de 2021
May be you are correct. I'm not that much familiar with matlab and I don't know for what M.' is used for... This is the question in coursera assignment of vanderbilt university. This question appears after completion of few topics where the topic of M.' is not covered.... My answer is for them who are facing the same situation like me. Because I too didn't got the answer for a long time and I saw your solution(I think so) I didn't understand what's going on in your code. I hope you understand my situation...
Walter Roberson
el 25 de Jun. de 2021
I have not posted a solution for this, as it is a homework question, and I avoid posting complete answers to homework questions.
The difference between M' and M.' is that M.' is plain transpose, but M' is conjugate transpose.
M = [1+2i 2-3i 4]
M'
M.'
Notice that in the M' that the signs of the complex part have changed but in the M.' version they do not change. You can see from the final entry that the result is the same for values that have no complex part.
As a matter of style, I recommend that you always use .' unless you specifically need conjugate transpose: using .' will save people having to think a lot about your code to figure out whether you should have used .' instead of '
Vetrimurasu Baskaran
el 6 de Jun. de 2022
Editada: DGM
el 26 de Feb. de 2023
function [mmr,mmm] = minimax(M)
r = size(M);
val = r(1);
mmr = inf;
for i = 1:val
mmr(i) = max(M(i,1:end)) - min(M(i,1:end));
end
A = M(:);
mmm = max(A)-min(A);
end
0 comentarios
Adwaith G
el 27 de Jun. de 2022
I am new to Matlab , so i am explaining what i learned here.
Initially i solved it by using the code
function [mmr,mmm] = minimax(M)
mmr = max(M.')-min(M.');
mmm = max(M(:))-min(M(:));
# Both M' and M.' gives the transpose of a matrix. However, M' gives the conjugate transpose. So, I suggest that u only use M.'
However, this code fails if the matrix has only 1 column. So, i used the code
function [mmr,mmm] = minimax(M)
mmk = max(M,[],2)-min(M,[],2);
mmr = mmk.';
mmm = max(M(:))-min(M(:));
#max(M,[],2) computes the max value of each row and returns a column vector and in order to get a row vector, we take the transpose.
0 comentarios
Muhammad
el 22 de Jul. de 2022
Editada: Muhammad
el 22 de Jul. de 2022
function [mmr,mmm]=minimax(M)
mmr=[abs([max(M.')-min(M.')])]
mmm=abs([(max(M(:))-(min(M(:)))])
end
1 comentario
Walter Roberson
el 22 de Jul. de 2022
What purpose do those [ ] serve in the body of the code?
mmm=abs([(max(M(:))-(min(M(:)))])
123 4 5 43 4 5 6 54321
You have one more open bracket than you have close brackets
Arah Cristal
el 11 de Oct. de 2022
Editada: DGM
el 29 de Mzo. de 2023
function [mmr,mmm] = minimax (m)
mmr = abs(max(m.')-min(m.'))
mmm = (max(m,[],'all')-min(m,[],'all'))
1 comentario
Stephen23
el 7 de Nov. de 2022
Fails for any matrix with only one column:
minimax([1;2;3])
function [mmr,mmm] = minimax (m)
mmr = abs(max(m.')-min(m.'));
mmm = (max(m,[],'all')-min(m,[],'all'));
end
Muhammad Faizan Ahmed
el 18 de Dic. de 2022
Movida: DGM
el 29 de Mzo. de 2023
function [mmr, mmm] = minimax(M)
mmr = max(M')-min(M');
mmm = max(max(M)) - min(min(M));
0 comentarios
Hassan
el 29 de Mzo. de 2023
function [mmr,mmm]=minimax(M)
mmr=[abs(max(M(1:end,:).')-min(M(1:end,:).'))];
mmm=max(M(:))-min(M(:));
end
2 comentarios
Stephen23
el 29 de Mzo. de 2023
Fails for any matrix with only one column:
minimax([1;2;3])
function [mmr,mmm]=minimax(M)
mmr=[abs(max(M(1:end,:).')-min(M(1:end,:).'))];
mmm=max(M(:))-min(M(:));
end
DGM
el 29 de Mzo. de 2023
Editada: DGM
el 29 de Mzo. de 2023
- There's no point in doing abs(max(X)-min(X)). Think about why.
- There's no point in doing X(1:end,:). Think about why.
- There's no point in doing [X]. Think about why.
- Why reshape/transpose the array multiple times instead of just once?
How do so many people keep writing these same nonsense things unless:
- they're just building collages of code based on other bad code
- people somehow gravitate to these superfluous decorations when they want to make their code appear superficially unique for some bizarre purpose
This isn't where you turn in your assignment. There's little merit in posting something unless it correctly answers the question or provides the reader with new information. It should then stand to reason that there's little merit in repeating prior examples which have been demonstrated to be incorrect.
If you're going to post an answer in a thread full of junk answers, try to break that trend. Post an answer which is tested and documented. Explain why your answer is different than others (both strengths and weaknesses are important to know). Since you can run your code in the editor, you have the opportunity to demonstrate that it does what you say it does.
Aramis
el 5 de Feb. de 2024
Editada: Aramis
el 5 de Feb. de 2024
function [x, y] = minimax(M)
x = (max(M,[],2) - min(M,[],2))';
y = max(M,[], "all")- min(M,[], "all");
end
1 comentario
DGM
el 5 de Feb. de 2024
While this is correct, it's not really any different than the answer above it. The only difference is the change in output variable names, which are (I assume) dictated by the assignment. If the grader actually requires the outputs to be mmr, mmm respectively, then this would be a problem. Fixing the variable names would make this a duplicate answer.
La pregunta está cerrada.
Ver también
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!