How to know results

1 visualización (últimos 30 días)
Ani Asoyan
Ani Asoyan el 2 de Jun. de 2020
Comentada: Ameer Hamza el 3 de Jun. de 2020
I have a polynomial and parameters in it,
a=2, c=1, d=2 , g=0.5, k=2 , f=2
e=[2,8,5,4]
b=[1,2,3,4]
p=[ -c.*k+ (f.^2)*(e.^2)/a+2*e.*g, d.*e-(f*b.*e)/a]
roots(p)
I calculate roots of polynomial given parameter values.
But e an b parameters have vector values.
I want to know if it obtains roots for every combination of the e and b values or
it simply gets roots when e=2, b=1 , then b=8,e=2,... ?
  1 comentario
Ani Asoyan
Ani Asoyan el 2 de Jun. de 2020
I want to know if it takes into account cross-combinations of e and b ?

Iniciar sesión para comentar.

Respuesta aceptada

Ameer Hamza
Ameer Hamza el 2 de Jun. de 2020
Editada: Ameer Hamza el 2 de Jun. de 2020
Your current code does not solve the problem, as you described. You need to use for-loop
a=2, c=1, d=2 , g=0.5, k=2 , f=2
e=[2,8,5,4]
b=[1,2,3,4]
r = zeros(numel(e), 1) % polynomial is 1st order so there will be only one root
for i=1:numel(e)
p = [ -c.*k+(f.^2)*(e(i).^2)/a+2*e(i).*g, d.*e(i)-(f*b(i).*e(i))/a]
r(i) = roots(p)
end
  5 comentarios
Ani Asoyan
Ani Asoyan el 2 de Jun. de 2020
like in cross combinations, for example e=8,b=1 or e=8,b=3 ,ect...
Ameer Hamza
Ameer Hamza el 3 de Jun. de 2020
Following code use cross-combination
a=2, c=1, d=2 , g=0.5, k=2 , f=2
e=[2,8,5,4]
b=[1,2,3,4]
[E, B] = ndgrid(e, b);
e = E(:);
b = B(:);
r = zeros(numel(e), 1) % polynomial is 1st order so there will be only one root
for i=1:numel(e)
p = [ -c.*k+(f.^2)*(e(i).^2)/a+2*e(i).*g, d.*e(i)-(f*b(i).*e(i))/a]
r(i) = roots(p)
end
sol = [e, b, r]
1st column of 'sol' is 'e' value, 2nd is 'b' values, and 3rd is the corresponding root.

Iniciar sesión para comentar.

Más respuestas (1)

Steven Lord
Steven Lord el 2 de Jun. de 2020
As written your code solves for the roots of the 7th order polynomial whose coefficients are:
p =
8 134 53 34 2 0 -5 -8
This is:
8*x^7 + 134*x^6 + 53*x^5 + 34*x^4 + 2*x^3 - 5*x - 8
If instead you want to find the roots of the four first order polynomials created by specifying each element of e and b in the expression for p, use a for loop instead.
>> for q = 1:numel(e)
p=[ -c.*k+ (f.^2)*(e(q).^2)/a+2*e(q).*g, d.*e(q)-(f*b(q).*e(q))/a]
end
p =
8 2
p =
134 0
p =
53 -5
p =
34 -8
If you want to find the roots of the sixteen first order polynomials with elements taken from e and from b (and not necessarily the same element of each vector) the easiest way is to use a double for loop.
  2 comentarios
Ani Asoyan
Ani Asoyan el 2 de Jun. de 2020
sorry I didn't understand... my polynomial is 1st order
Steven Lord
Steven Lord el 2 de Jun. de 2020
It is not first order as you've written it. Use one or two for loops to construct and solve the four or sixteen first order polynomials or use the explicit formula for the solution of a linear equation.
% if q*x = w then x = w./q
a=2, c=1, d=2 , g=0.5, k=2 , f=2
e=[2,8,5,4]
b=[1,2,3,4]
q = -c.*k+ (f.^2)*(e.^2)/a+2*e.*g;
w = d.*e-(f*b.*e)/a;
x = w./q % Using ./ instead of / because w and q are vectors
check = q.*x - w % Should be all 0's or close to it

Iniciar sesión para comentar.

Categorías

Más información sobre Polynomials en Help Center y File Exchange.

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by