calculate empirical distribution function and interpolation

4 visualizaciones (últimos 30 días)
alpedhuez
alpedhuez el 2 de Jun. de 2020
Comentada: alpedhuez el 4 de Jun. de 2020
I have a data of
column 1 = temperature at 55F, 57F, 60F,...
column 2 = sales of sunglasses at these temperatures
I want to calculate the empirical distribution of sales of sunglasses over time and then use this empirical distribution to estimate the sales of sunglasses when the temperature is 56.6F, etc.
I tried to use polyfit but told that polynomial is badly conditioned.

Respuestas (1)

Jeff Miller
Jeff Miller el 3 de Jun. de 2020
You want to use the regress function, something like this:
X = [ones(size(temp) temp)]; % temp is a column vector of temperatures
b = regress(sales,X); % sales is a column vector of sales
SalesAt56pt6 = b(1) + b(2)*56.6;
empirical distribution functions and polyfit are both used in different types of situations than you are describing.
hth
  3 comentarios
Jeff Miller
Jeff Miller el 4 de Jun. de 2020
You can add some nonlinear terms like this:
X = [ones(size(temp)) temp temp.^2 temp.^3]; % temp is a column vector of temperatures
b = regress(sales,X); % sales is a column vector of sales
SalesAt56pt6 = b(1) + b(2)*56.6 + b(3)*56.6^2 + b(4)*56.6^3;
This technique will fit a polynomial of any order you want
alpedhuez
alpedhuez el 4 de Jun. de 2020
Thank you. How does it differ from polyfit?

Iniciar sesión para comentar.

Categorías

Más información sobre Linear and Nonlinear Regression en Help Center y File Exchange.

Etiquetas

Productos


Versión

R2020a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by