Extreme gain for low pass filter

3 visualizaciones (últimos 30 días)
Sebastian Holmqvist
Sebastian Holmqvist el 21 de Nov. de 2012
% Filter constants
Wp = 5e3*2*pi;
Ws = 9.5e3*2*pi;
Rp = 2;
Rs = 45;
% Butterworth lowest order
[n,Wn] = buttord(Wp,Ws,Rp,Rs,'s');
disp([10 'Butterworth order: ' num2str(n) ' @ ' num2str(Wn/(2*pi)) ' [Hz]']);
[z,p,k] = butter(n,Wn,'s');
disp(['Zeros: ' num2str(size(z,1)) 10 ...
'Poles: ' num2str(size(p,1)) 10 ...
'Gain: ' num2str(k)]);
> Butterworth order: 9 @ 5342.252 [Hz]
> Zeros: 0
> Poles: 9
> Gain: 54092634016296818598907515083157976121344
How is this gain possible? Is this a weird bug?

Respuesta aceptada

Teja Muppirala
Teja Muppirala el 21 de Nov. de 2012
Editada: Teja Muppirala el 21 de Nov. de 2012
I don't think that is a weird bug. That large value looks correct to me.
The DC gain should = 1. In other words, if you plug in s = 0, you should get 1. Since there are no zeros, this implies that the product of the poles is the gain:
G(s) = K/[ (s-p(1)) * (s-p(2)) * (s-p(3)) * ... (s-p(9)) ]
G(0) = K/[ (-p(1)) * (-p(2)) * (-p(3)) * ... (-p(9)) ] = 1
--> Therefore K = prod(-p)
Actually plugging it in
prod(-p)
ans =
5.4093e+40
Which is precisely what K is.
  1 comentario
Sebastian Holmqvist
Sebastian Holmqvist el 21 de Nov. de 2012
Excellent explanation! We are to implement this in a typical Sallen-Key circuit and were a bit thrown by the large numbers. But we see now that the gain K relates to the pole, not directly to any physical components in our amplifier.

Iniciar sesión para comentar.

Más respuestas (0)

Productos

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by