Plotting a Nyquist Curve Point by Point

5 visualizaciones (últimos 30 días)
Julia Hariharan
Julia Hariharan el 11 de Jun. de 2020
Editada: madhan ravi el 11 de Jun. de 2020
I am trying to test the stability of a system that I have mathematically modeled in MatLab. I have a series of Frequency points that I have impedance values for and I form a matrix of their eigenvalues for each frequency point. I want to be able to create a Nyquist curve from these points, but I do not know how to do so without a transfer function. This is what my code looks like now (the two files I run separately include my impedance values):
%Frequency from scan
Sweep;
for k=2:1:50
F(:,k)
s=2*pi*F*i
LineImpedanceCalculation;
end
%Impedance from scan, converted to complex
[a,b]=pol2cart(Zp(:,3),Zp(:,2));
Zp=a+b;
%Line Impedance Calculations
%Impedance Matrix Formulation
num6=0*F;
den6=1;
sys6=num6/den6;
num7=0*F;
den7=1;
sys7=num7/den7;
%Node 1
Z11=Zp+sys1+sys3
Z12n=sys1+sys6+sys7;
Z12=Z12n.'
Z13n=sys3+sys6+sys7;
Z13=Z13n.'
%Node 2
Z21n=sys1+sys6+sys7;
Z21=Z21n.'
Z22=Zp+sys2+sys1
Z23n=sys2+sys6+sys7;
Z23=Z23n.'
%Node 3
Z31n=sys3+sys6+sys7;
Z31=Z31n.'
Z32n=sys2+sys6+sys7;
Z32=Z32n.'
Z33=Zp+sys2+sys1;
%Final Impedance Matrix
for p=1:1:49
Zmat = [Z11(p,:) Z12(p,:) Z13(p,:); Z21(p,:) Z22(p,:) Z23(p,:); Z31(p,:) Z32(p,:) Z33(p,:)]
%Admittance Matrix and Eigenvalues
Ymat = inv(Zmat)
X = eig(Ymat)
%%%where I want to implement my Nyquist curve
plot(abs(X),angle(X))
end

Respuestas (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by