How to solve mass spring damper over frequency (differential equation)?
12 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
This is a mass-spring-damper system equation with a function dependent on frequency (M, R, & K in parethesis).
f = 50:450; % Hz
M = 23.3;
K = 3.61 * 10^7;
R = 1360;
P = -1 * (2 * pi * f);
ic = 2 * pi * 50; % rad/s
The figure shows the linear impedance frequency response of the system defined by the equation.
How do you go from the differential equation to the figure?
I've seen differential equation solvers using time & displacement, but no luck on just frequency response.
4 comentarios
Rafael Hernandez-Walls
el 12 de Jun. de 2020
You need initial condition for the displacement and for the velocity. Then you need write the ODE in two equations of first orden. Lke this
and solve using ode45
Respuestas (2)
Gifari Zulkarnaen
el 12 de Jun. de 2020
Equation of motion is time-dependant equation. Perhaps what you mean is Response Spectrum (frequency-based response data)? This is calculation for acceleration response spectrum:
clear
close all
f = 50:10:450; % Hz
M = 23.3;
K = 3.61*10^7;
R = 1360;
RS = zeros(1,length(f));
for i=1:length(f)
tspan = [0 1]; % Frequency range
Y0 = zeros(2,1); % Initial zero condition
[t,Y] = ode45(@(t,Y) StateEqOfMotion(t,Y,M,K,R,f(i)),tspan,Y0); % ODE
% Output Y is in term of displacement and velocity
a = Y(:,2)./t; % Acceleration
RS(i) = max(abs(a)); % Acceleration response spectrum
end
plot(f,RS)
% ODE function of State Equation
function dYdt = StateEqOfMotion(t,Y,M,K,R,f)
P = -cos(t*f);
x = Y(1);
v = Y(2);
a = (-(R*v+K*x)+P)/M;
dYdt = [v; a];
end
The result is still different with what your graph, but maybe this can give insight
0 comentarios
Swami
el 17 de Sept. de 2024
clear
close all
f = 50:10:450; % Hz
M = 23.3;
K = 3.61*10^7;
R = 1360;
RS = zeros(1,length(f));
for i=1:length(f)
tspan = [0 1]; % Frequency range
Y0 = zeros(2,1); % Initial zero condition
[t,Y] = ode45(@(t,Y) StateEqOfMotion(t,Y,M,K,R,f(i)),tspan,Y0); % ODE
% Output Y is in term of displacement and velocity
a = Y(:,2)./t; % Acceleration
RS(i) = max(abs(a)); % Acceleration response spectrum
end
plot(f,RS)
% ODE function of State Equation
function dYdt = StateEqOfMotion(t,Y,M,K,R,f)
P = -cos(t*f);
x = Y(1);
v = Y(2);
a = (-(R*v+K*x)+P)/M;
dYdt = [v; a];
end
0 comentarios
Ver también
Categorías
Más información sobre Numerical Integration and Differential Equations en Help Center y File Exchange.
Productos
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!